Difference between revisions of "1970 Canadian MO Problems/Problem 9"
(→Problem) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == Problem == | + | == Problem 9 == |
+ | Let <math>f(n)</math> be the sum of the first <math>n</math> terms of the sequence | ||
+ | <cmath> 0, 1,1, 2,2, 3,3, 4,4, 5,5, 6,6, \ldots\, . </cmath> | ||
+ | a) Give a formula for <math>f(n)</math>. | ||
− | + | b) Prove that <math>f(s+t)-f(s-t)=st</math> where <math>s</math> and <math>t</math> are positive integers and <math>s>t</math>. | |
− | b) Prove that <math>f(s+t)-f(s-t)= | ||
== Solution == | == Solution == | ||
+ | |||
+ | '''Part a):''' | ||
+ | |||
+ | <math>f(n)=\begin{cases} 2\sum_{k=1}^{\frac{n-1}{2}}k,\; & n\;is\;odd \\ 2\sum_{k=1}^{\frac{n}{2}}k-\frac{n}{2},\; & n\;is\;even\end{cases}</math> | ||
+ | |||
+ | <math>f(n)=\begin{cases} \left( \frac{n-1}{2} \right)\left( \frac{n-1}{2}+1 \right),\; & n\;is\;odd \\ | ||
+ | \left( \frac{n}{2} \right)\left( \frac{n}{2}+1 \right)-\frac{n}{2},\; & n\;is\;even\end{cases}</math> | ||
+ | |||
+ | <math>f(n)=\begin{cases} \frac{n^2-1}{4},\; & n\;is\;odd \\ | ||
+ | \frac{n^2}{4},\; & n\;is\;even\end{cases}</math> | ||
+ | |||
+ | Using <math>(-1)^n</math> in the formula we can have: | ||
+ | |||
+ | <math>\frac{(-1)^n-1}{2}=\begin{cases} -1,\; & n\;is\;odd \\ | ||
+ | 0,\; & n\;is\;even\end{cases}</math> | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>f(n)=\frac{n^2+\frac{(-1)^n-1}{2}}{4}</math> | ||
+ | |||
+ | <math>f(n)=\frac{2n^2-1+(-1)^n}{8}</math> | ||
+ | |||
+ | '''Part b):''' | ||
+ | |||
+ | <math>f(s+t)-f(s-t)=\frac{2(s+t)^2-1+(-1)^{s+t}}{8}-\frac{2(s-t)^2-1+(-1)^{s-t}}{8}</math> | ||
+ | |||
+ | since <math>(s+t)\equiv (s-t)\;(mod\;2)</math>, then <math>(-1)^{s+t}=(-1)^{s-t}</math> and our expression reduces to: | ||
+ | |||
+ | <math>f(s+t)-f(s-t)=\frac{2(s+t)^2-2(s-t)^2}{8}=\frac{(s+t)^2-(s-t)^2}{4}</math> | ||
+ | |||
+ | <math>f(s+t)-f(s-t)=\frac{s^2+2st+t^2-s^2+2st-t^2}{4}=\frac{4st}{4}=st</math> | ||
+ | |||
+ | Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
+ | {{alternate solutions}} |
Latest revision as of 22:31, 27 November 2023
Problem 9
Let be the sum of the first terms of the sequence a) Give a formula for .
b) Prove that where and are positive integers and .
Solution
Part a):
Using in the formula we can have:
Therefore,
Part b):
since , then and our expression reduces to:
Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.