Difference between revisions of "Addition"
m (→Properties) |
m (→See also) |
||
(One intermediate revision by one other user not shown) | |||
Line 7: | Line 7: | ||
* Commutativity: The sum <math>a+b</math> is equivalent to <math>b+a</math>. | * Commutativity: The sum <math>a+b</math> is equivalent to <math>b+a</math>. | ||
* Associativity: The sum <math>(a+b)+c</math> is equivalent to <math>a+(b+c)</math>. This sum is usually denoted <math>a+b+c</math>. | * Associativity: The sum <math>(a+b)+c</math> is equivalent to <math>a+(b+c)</math>. This sum is usually denoted <math>a+b+c</math>. | ||
− | * Distributivity: a(b+c)=ab+ac | + | * Distributivity: <math>a(b+c)=ab+ac</math> |
* [[Closure]]: If <math>a</math> and <math>b</math> are both elements of <math>\mathbb{R}</math>, then <math>a+b</math> is an element of <math>\mathbb{R}</math>. This is also the case with <math>\mathbb{N}</math>, <math>\mathbb{Z}</math>, and <math>\mathbb{C}</math>. | * [[Closure]]: If <math>a</math> and <math>b</math> are both elements of <math>\mathbb{R}</math>, then <math>a+b</math> is an element of <math>\mathbb{R}</math>. This is also the case with <math>\mathbb{N}</math>, <math>\mathbb{Z}</math>, and <math>\mathbb{C}</math>. | ||
* Identity: <math>a+0=a</math> for any complex number <math>a</math>. | * Identity: <math>a+0=a</math> for any complex number <math>a</math>. | ||
Line 16: | Line 16: | ||
* <math>a+(-b)=a-b</math> (See also [[Subtraction]]) | * <math>a+(-b)=a-b</math> (See also [[Subtraction]]) | ||
− | == See also == | + | ==See also== |
− | * [[Arithmetic]] | + | *[[Arithmetic]] |
− | * [[Number theory]] | + | *[[Number theory]] |
− | * [[Subtraction]] | + | *[[Subtraction]] |
− | * [[ | + | *[[Hyperoperation]] |
− | + | *[[Counting]] | |
− | * [[Counting]] | ||
{{stub}} | {{stub}} | ||
[[Category:Definition]] | [[Category:Definition]] | ||
[[Category:Operation]] | [[Category:Operation]] |
Latest revision as of 18:25, 1 January 2025
Addition is the mathematical operation (it is represented by the sign) which combines two quantities. The result of addition is called a sum. For example, the sum of 3 and 2 is 5 because .
Notation
The sum of two numbers and is denoted , which is read "a plus b." The two numbers being added together, or and , are called addends. The sum of , where is a function, is denoted . (See also Sigma notation)
Properties
- Commutativity: The sum is equivalent to .
- Associativity: The sum is equivalent to . This sum is usually denoted .
- Distributivity:
- Closure: If and are both elements of , then is an element of . This is also the case with , , and .
- Identity: for any complex number .
- Inverse: The sum of a number and its additive inverse, , is equal to zero.
- Equality: If , then .
- If is real and is positive, .
- The sum of a number and its Complex conjugate is a real number.
- (See also Subtraction)
See also
This article is a stub. Help us out by expanding it.