Difference between revisions of "Mock AIME 4 2006-2007 Problems/Problem 11"
(→Solution) |
|||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>\triangle ABC</math> be an equilateral triangle. Two points <math>D</math> and <math>E</math> are chosen on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>AD = CE</math>. Let <math>F</math> be the intersection of <math>\overline{BE}</math> and <math>\overline{CD}</math>. The area of <math>\triangle ABC</math> is 13 and the area of <math>\triangle ACF</math> is 3. If <math>\frac{CE}{EA}=\frac{p+\sqrt{q}}{r}</math>, where <math>p</math>, <math>q</math>, and <math>r</math> are relatively prime positive integers, compute <math>p+q+r</math>. | Let <math>\triangle ABC</math> be an equilateral triangle. Two points <math>D</math> and <math>E</math> are chosen on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>AD = CE</math>. Let <math>F</math> be the intersection of <math>\overline{BE}</math> and <math>\overline{CD}</math>. The area of <math>\triangle ABC</math> is 13 and the area of <math>\triangle ACF</math> is 3. If <math>\frac{CE}{EA}=\frac{p+\sqrt{q}}{r}</math>, where <math>p</math>, <math>q</math>, and <math>r</math> are relatively prime positive integers, compute <math>p+q+r</math>. | ||
+ | |||
==Solution== | ==Solution== | ||
− | {{ | + | Let <math>AD = CE = a</math>, and <math>EA = DB = b</math>. Note that we want to compute the ratio <math>\frac{a}{b}</math>. |
+ | |||
+ | Assign a mass of <math>a</math> to point <math>A</math>. This gives point <math>C</math> a mass of <math>b</math> and point <math>D</math> a mass of <math>a + \frac{a^2}{b}</math>. Thus, <math>\frac{CF}{FD} = \frac{a+\frac{a^2}{b}}{b}</math>. | ||
+ | |||
+ | Since the ratio of areas of triangles that share an altitude is simply the ratio of their bases, we have that: | ||
+ | |||
+ | <math>13 \cdot \frac{a}{a+b} \cdot \frac{a+\frac{a^2}{b}}{a+\frac{a^2}{b} + b} = 3 | ||
+ | \newline | ||
+ | \newline | ||
+ | \newline | ||
+ | 13 \cdot \frac{a}{a+b} \cdot \frac{ab + a^2}{ab + a^2 + b^2} = 3 | ||
+ | \newline | ||
+ | \newline | ||
+ | \newline | ||
+ | 13 \cdot \frac{a^2}{ab+a^2+b^2} = 3 | ||
+ | \newline | ||
+ | \newline | ||
+ | \newline | ||
+ | \frac{a^2}{ab+a^2+b^2} = \frac{3}{13} | ||
+ | \newline | ||
+ | \newline | ||
+ | \newline | ||
+ | \frac{b^2 + a^2 + ab}{a^2} = \frac{13}{3} | ||
+ | \newline | ||
+ | \newline | ||
+ | \newline | ||
+ | (\frac{b}{a})^2 + \frac{b}{a} = \frac{10}{3}</math>. | ||
+ | |||
+ | By the quadratic formula, we find that <math>\frac{b}{a} = \frac{\sqrt{129}-3}{6}</math>, so <math>\frac{a}{b} = \frac{6}{\sqrt{129}-3} = \frac{3 + \sqrt{129}}{20}</math>. | ||
+ | |||
+ | Thus, our final answer is <math>3 + 129 + 20 = \boxed{152}</math>. | ||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | *[[Mock AIME 4 2006-2007 Problems/Problem 12| Next Problem]] | ||
+ | *[[Mock AIME 4 2006-2007 Problems/Problem 10| Previous Problem]] | ||
*[[Mock AIME 4 2006-2007 Problems]] | *[[Mock AIME 4 2006-2007 Problems]] |
Latest revision as of 18:33, 9 February 2017
Problem
Let be an equilateral triangle. Two points and are chosen on and , respectively, such that . Let be the intersection of and . The area of is 13 and the area of is 3. If , where , , and are relatively prime positive integers, compute .
Solution
Let , and . Note that we want to compute the ratio .
Assign a mass of to point . This gives point a mass of and point a mass of . Thus, .
Since the ratio of areas of triangles that share an altitude is simply the ratio of their bases, we have that:
.
By the quadratic formula, we find that , so .
Thus, our final answer is .