Difference between revisions of "2008 AMC 8 Problems/Problem 23"

(Video Solution 2)
 
(16 intermediate revisions by 7 users not shown)
Line 18: Line 18:
 
label("$F$", (0,3), W);
 
label("$F$", (0,3), W);
 
</asy>
 
</asy>
 +
 
<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math>
 
<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math>
  
==Solution==
+
==Solution 1==
 
The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>.
 
The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>.
  
Line 47: Line 48:
  
 
<cmath>\frac{36-12-12-2}{36} = \frac{10}{36} = \boxed{\textbf{(C)}\ \frac{5}{18}}</cmath>
 
<cmath>\frac{36-12-12-2}{36} = \frac{10}{36} = \boxed{\textbf{(C)}\ \frac{5}{18}}</cmath>
 +
 +
==Solution 2==
 +
Say that <math>\overline{FE}</math> has length <math>x</math>, and that from there we can infer that <math>\overline{AF} = 2x</math>. We also know that <math>\overline{ED} = x</math>, and that <math>\overline{DC} = 2x</math>. The area of triangle <math>BFD</math> is the square's area subtracted from the area of the excess triangles, which is simply these equations:
 +
<cmath>9x^2 - (3x^2 + \dfrac{x}{2}^2 + 3x^2) </cmath>
 +
<cmath>9x^2 - 6.5x^2</cmath>
 +
<cmath>2.5x^2</cmath>
 +
Thus, the area of the triangle is <math>2.5x^2</math>. We can now put the ratio of triangle <math>BFD</math>'s area to the area of the square <math>ABCE</math> as a fraction. We have:
 +
<cmath>\dfrac{2.5x^2}{9x^2}</cmath>
 +
<cmath>\dfrac{2.5\cancel{x^2}}{9\cancel{x^2}} </cmath>
 +
<cmath>\dfrac{2.5}{9}</cmath>
 +
<cmath>\dfrac{5}{18} </cmath>
 +
Thus, our answer is <math>\boxed{C}</math>, <math>\boxed{\dfrac{5}{18}}</math>.
 +
 +
~Mr.BigBrain_AoPS
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/abSgjn4Qs34?t=528
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==

Latest revision as of 08:39, 20 June 2024

Problem

In square $ABCE$, $AF=2FE$ and $CD=2DE$. What is the ratio of the area of $\triangle BFD$ to the area of square $ABCE$? [asy] size((100)); draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(9,9)--(0,3)--cycle); dot((3,0)); dot((0,3)); dot((9,9)); dot((0,0)); dot((9,0)); dot((0,9)); label("$A$", (0,9), NW); label("$B$", (9,9), NE); label("$C$", (9,0), SE); label("$D$", (3,0), S); label("$E$", (0,0), SW); label("$F$", (0,3), W); [/asy]

$\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20}$

Solution 1

The area of $\triangle BFD$ is the area of square $ABCE$ subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be $6$.

[asy] size((100)); pair A=(0,9), B=(9,9), C=(9,0), D=(3,0), E=(0,0), F=(0,3); pair[] ps={A,B,C,D,E,F}; dot(ps); draw(A--B--C--E--cycle); draw(B--F--D--cycle); label("$A$",A, NW); label("$B$",B, NE); label("$C$",C, SE); label("$D$",D, S); label("$E$",E, SW); label("$F$",F, W); label("$6$",A--B,N); label("$6$",(10,4.5),E); label("$4$",D--C,S); label("$2$",E--D,S); label("$2$",E--F,W); label("$4$",F--A,W); [/asy]

The ratio of the area of $\triangle BFD$ to the area of $ABCE$ is

\[\frac{36-12-12-2}{36} = \frac{10}{36} = \boxed{\textbf{(C)}\ \frac{5}{18}}\]

Solution 2

Say that $\overline{FE}$ has length $x$, and that from there we can infer that $\overline{AF} = 2x$. We also know that $\overline{ED} = x$, and that $\overline{DC} = 2x$. The area of triangle $BFD$ is the square's area subtracted from the area of the excess triangles, which is simply these equations: \[9x^2 - (3x^2 + \dfrac{x}{2}^2 + 3x^2)\] \[9x^2 - 6.5x^2\] \[2.5x^2\] Thus, the area of the triangle is $2.5x^2$. We can now put the ratio of triangle $BFD$'s area to the area of the square $ABCE$ as a fraction. We have: \[\dfrac{2.5x^2}{9x^2}\] \[\dfrac{2.5\cancel{x^2}}{9\cancel{x^2}}\] \[\dfrac{2.5}{9}\] \[\dfrac{5}{18}\] Thus, our answer is $\boxed{C}$, $\boxed{\dfrac{5}{18}}$.

~Mr.BigBrain_AoPS

Video Solution by OmegaLearn

https://youtu.be/abSgjn4Qs34?t=528

~ pi_is_3.14

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png