|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 10]] |
− | Seven teams play a soccer tournament in which each team plays every other team exactly once. No ties occur, each team has a <math> 50\% </math> chance of winning each game it plays, and the outcomes of the games are independent. In each game, the winner is awarded a point and the loser gets 0 points. The total points are accumilated to decide the ranks of the teams. In the first game of the tournament, team <math> A </math> beats team <math> B. </math> The probability that team <math> A </math> finishes with more points than team <math> B </math> is <math> m/n, </math> where <math> m </math> and <math> n </math> are relatively prime positive integers. Find <math> m+n. </math>
| |
− | | |
− | == Solution ==
| |
− | You can break this into cases based on how many rounds A wins out of the remaining 5 games.
| |
− | | |
− | If A wins 0 games, then B must win 0 games and the probability of this is <math> \frac{{0 \choose 5}}{2^5} \frac{{0 \choose 5}}{2^5} = \frac{1}{1024} </math>.
| |
− | | |
− | If A wins 1 games, then B must win 1 or less games and the probability of this is <math> \frac{{1 \choose 5}}{2^5} \frac{{0 \choose 5}+{1 \choose 5}}{2^5} = \frac{5}{1024} </math>.
| |
− | | |
− | If A wins 2 games, then B must win 2 or less games and the probability of this is <math> \frac{{2 \choose 5}}{2^5} \frac{{0 \choose 5}+{1 \choose 5}+{2 \choose 5}}{2^5} = \frac{160}{1024} </math>.
| |
− | | |
− | If A wins 3 games, then B must win 3 or less games and the probability of this is <math> \frac{{3 \choose 5}}{2^5} \frac{{0 \choose 5}+{1 \choose 5}+{2 \choose 5}+{3 \choose 5}}{2^5} = \frac{260}{1024} </math>.
| |
− | | |
− | If A wins 4 games, then B must win 4 or less games and the probability of this is <math> \frac{{4 \choose 5}}{2^5} \frac{{0 \choose 5}+{1 \choose 5}+{2 \choose 5}+{3 \choose 5}+{4 \choose 5}}{2^5} = \frac{155}{1024} </math>.
| |
− | | |
− | If A wins 5 games, then B must win 5 or less games and the probability of this is <math> \frac{{5 \choose 5}}{2^5} \frac{{0 \choose 5}+{1 \choose 5}+{2 \choose 5}+{3 \choose 5}+{4 \choose 5}+{5 \choose 5}}{2^5} = \frac{32}{1024} </math>.
| |
− | | |
− | Summing these 6 cases, we get <math> \frac{638}{1024} </math>, which simplifies to <math> \frac{319}{512} </math>, so out answer is <math>319 + 512 = 831</math>.
| |
− | | |
− | == See also ==
| |
− | *[[2006 AIME II Problems/Problem 9 | Previous problem]]
| |
− | *[[2006 AIME II Problems/Problem 11 | Next problem]]
| |
− | *[[2006 AIME II Problems]]
| |
− | [[Category:Intermediate Combinatorics Problems]]
| |