Difference between revisions of "2021 CMC 12A Problems/Problem 4"
Sugar rush (talk | contribs) (typo) |
(→Problem) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{duplicate|[[2021 CMC 12A Problems | 2021 CMC 12A #4]] and [[2021 CMC 10A Problems | 2021 CMC 10A #5]]}} | {{duplicate|[[2021 CMC 12A Problems | 2021 CMC 12A #4]] and [[2021 CMC 10A Problems | 2021 CMC 10A #5]]}} | ||
==Problem== | ==Problem== | ||
− | There exists a positive integer <math>N</math> such that <cmath>\frac{\tfrac{1}{999}+\tfrac{1}{1001}}{2}=\frac{1}{N}.</cmath> What is the sum of the digits of <math>N</math>? | + | There exists a positive integer <math>N</math> such that <cmath>\frac{\tfrac{1}{999}+\tfrac{1}{1001}}{2}=\frac{1}{1000}+\frac{1}{N}.</cmath> What is the sum of the digits of <math>N</math>? |
<math>\textbf{(A) } 36\qquad\textbf{(B) } 45\qquad\textbf{(C) } 54\qquad\textbf{(D) } 63\qquad\textbf{(E) } 72\qquad</math> | <math>\textbf{(A) } 36\qquad\textbf{(B) } 45\qquad\textbf{(C) } 54\qquad\textbf{(D) } 63\qquad\textbf{(E) } 72\qquad</math> | ||
Line 16: | Line 16: | ||
{{CMC12 box|year=2021|ab=A|num-b=3|num-a=5}} | {{CMC12 box|year=2021|ab=A|num-b=3|num-a=5}} | ||
{{CMC10 box|year=2021|ab=A|num-b=4|num-a=6}} | {{CMC10 box|year=2021|ab=A|num-b=4|num-a=6}} | ||
+ | {{MAC Notice}} |
Latest revision as of 23:41, 24 March 2023
- The following problem is from both the 2021 CMC 12A #4 and 2021 CMC 10A #5, so both problems redirect to this page.
Contents
Problem
There exists a positive integer such that What is the sum of the digits of ?
Solution
Let . Then or , so whose digits sum to .
Video Solution
~Punxsutawney Phil
See also
2021 CMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All CMC 12 Problems and Solutions |
2021 CMC 10A (Problems • Answer Key • Resources) | |
Preceded by Problem 4 |
Followed by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All CMC 10 Problems and Solutions |
The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions.