Difference between revisions of "2021 CIME I Problems"

(incomplete problems)
m (added solution page link)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{CIME box|year=2021|n=I}}
+
{{CIME Problems|year=2021|n=I}}
 
==Problem 1==
 
==Problem 1==
 
Let <math>ABCD</math> be a square. Points <math>P</math> and <math>Q</math> are on sides <math>AB</math> and <math>CD,</math> respectively<math>,</math> such that the areas of quadrilaterals <math>APQD</math> and <math>BPQC</math> are <math>20</math> and <math>21,</math> respectively. Given that <math>\tfrac{AP}{BP}=2,</math> then <math>\tfrac{DQ}{CQ}=\tfrac{a}{b},</math> where <math>a</math> and <math>b</math> are relatively prime positive integers. Find <math>a+b</math>.
 
Let <math>ABCD</math> be a square. Points <math>P</math> and <math>Q</math> are on sides <math>AB</math> and <math>CD,</math> respectively<math>,</math> such that the areas of quadrilaterals <math>APQD</math> and <math>BPQC</math> are <math>20</math> and <math>21,</math> respectively. Given that <math>\tfrac{AP}{BP}=2,</math> then <math>\tfrac{DQ}{CQ}=\tfrac{a}{b},</math> where <math>a</math> and <math>b</math> are relatively prime positive integers. Find <math>a+b</math>.
 +
 +
[[2021 CIME I Problems/Problem 1|Solution]]
  
 
==Problem 2==
 
==Problem 2==
 
For digits <math>a, b, c,</math> with <math>a\neq 0,</math> the positive integer <math>N</math> can be written as <math>\underline{a}\underline{a}\underline{b}\underline{b}</math> in base <math>9,</math> and <math>\underline{a}\underline{a}\underline{b}\underline{b}\underline{c}</math> in base <math>5</math>. Find the base-<math>10</math> representation of <math>N</math>.
 
For digits <math>a, b, c,</math> with <math>a\neq 0,</math> the positive integer <math>N</math> can be written as <math>\underline{a}\underline{a}\underline{b}\underline{b}</math> in base <math>9,</math> and <math>\underline{a}\underline{a}\underline{b}\underline{b}\underline{c}</math> in base <math>5</math>. Find the base-<math>10</math> representation of <math>N</math>.
 +
 +
[[2021 CIME I Problems/Problem 2|Solution]]
 +
 +
==See also==
 +
{{CIME box|year=2021|n=I|before=[[2020 CIME II Problems]]|after=[[2021 CIME II Problems]]}}

Latest revision as of 18:01, 24 July 2024

2021 CIME I (Answer Key)
Printable version | AoPS Contest Collections

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Let $ABCD$ be a square. Points $P$ and $Q$ are on sides $AB$ and $CD,$ respectively$,$ such that the areas of quadrilaterals $APQD$ and $BPQC$ are $20$ and $21,$ respectively. Given that $\tfrac{AP}{BP}=2,$ then $\tfrac{DQ}{CQ}=\tfrac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

Solution

Problem 2

For digits $a, b, c,$ with $a\neq 0,$ the positive integer $N$ can be written as $\underline{a}\underline{a}\underline{b}\underline{b}$ in base $9,$ and $\underline{a}\underline{a}\underline{b}\underline{b}\underline{c}$ in base $5$. Find the base-$10$ representation of $N$.

Solution

See also

2021 CIME I (ProblemsAnswer KeyResources)
Preceded by
2020 CIME II Problems
Followed by
2021 CIME II Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions