Difference between revisions of "1981 AHSME Problems/Problem 16"

(Created page with "==Problem== The base three representation of <math>x</math> is <cmath>12112211122211112222</cmath> The first digit (on the left) of the base nine representation of <math>x</m...")
 
(Solution (Long Way))
 
(2 intermediate revisions by one other user not shown)
Line 5: Line 5:
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 
==Solution==
 
 
Notice that the value of the leftmost <math>1</math> is equal to <math>1 \cdot 3^{20}.</math> Converting this to base 9, you would get <math>1 \cdot 9^{10}.</math> Therefore, the leftmost digit is equal to 1, and the answer is <math> \textbf{(A)}\ 1.</math>
 
  
 
==Solution (Long Way)==
 
==Solution (Long Way)==
 
Convert <math>x</math> to base 10 then convert the result to base 9.
 
Convert <math>x</math> to base 10 then convert the result to base 9.
<cmath>12112211122211112222_{3} = 8847859</cmath>
+
<cmath>12112211122211112222_{3} = 2150029898</cmath>
  
<cmath>8847859 = 17574874_{9}</cmath>
+
<cmath>2150029898 = 5484584488_{9}</cmath>
  
Therefore, the answer is <math> \textbf{(A)}\ 1.</math>
+
Therefore, the answer is <math> \textbf{(E)}\ 5.</math>
  
 
-edited by coolmath34
 
-edited by coolmath34
 +
 +
==Solution (Faster Way)==
 +
Every 2 numbers in base 3 represents 1 number in base 9.
 +
The first 2 numbers on the left,12 = 1(3) + 2(1) = 5.
 +
 +
So the answer is <math> \textbf{(E)}\ 5.</math>

Latest revision as of 19:56, 5 May 2021

Problem

The base three representation of $x$ is \[12112211122211112222\] The first digit (on the left) of the base nine representation of $x$ is

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution (Long Way)

Convert $x$ to base 10 then convert the result to base 9. \[12112211122211112222_{3} = 2150029898\]

\[2150029898 = 5484584488_{9}\]

Therefore, the answer is $\textbf{(E)}\ 5.$

-edited by coolmath34

Solution (Faster Way)

Every 2 numbers in base 3 represents 1 number in base 9. The first 2 numbers on the left,12 = 1(3) + 2(1) = 5.

So the answer is $\textbf{(E)}\ 5.$