Difference between revisions of "Talk:2021 AIME II Problems/Problem 1"
MRENTHUSIASM (talk | contribs) (Created page with "==Remarks (Further Generalizations)== <i><b>More generally, for every positive integer <math>\boldsymbol{k,}</math> the arithmetic mean of all the <math>\boldsymbol{(2k-1)}</m...") |
MRENTHUSIASM (talk | contribs) m |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == | + | ==Further Generalizations== |
<i><b>More generally, for every positive integer <math>\boldsymbol{k,}</math> the arithmetic mean of all the <math>\boldsymbol{(2k-1)}</math>-digit palindromes is <cmath>\boldsymbol{\frac{10^{2k-1}+10^{2k-2}}{2}.}</cmath></b></i> In this problem we have <math>k=2,</math> from which the answer is <math>\frac{10^3+10^2}{2}=550.</math> | <i><b>More generally, for every positive integer <math>\boldsymbol{k,}</math> the arithmetic mean of all the <math>\boldsymbol{(2k-1)}</math>-digit palindromes is <cmath>\boldsymbol{\frac{10^{2k-1}+10^{2k-2}}{2}.}</cmath></b></i> In this problem we have <math>k=2,</math> from which the answer is <math>\frac{10^3+10^2}{2}=550.</math> | ||
− | Note that all <math>(2k-1)</math>-digit palindromes are of the form <cmath>\underline{D_1D_2D_3\ | + | Note that all <math>(2k-1)</math>-digit palindromes are of the form <cmath>\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}=D_1\left(10^{2k-2}+1\right)+D_2\left(10^{2k-3}+10\right)+D_3\left(10^{2k-4}+10^2\right)+\cdots+D_k\left(10^{k-1}\right),</cmath> where <math>D_1\in\{1,2,3,4,5,6,7,8,9\}</math> and <math>D_2,D_3,\ldots,D_k\in\{0,1,2,3,4,5,6,7,8,9\}.</math> Using this notation, we will prove the bolded claim in two different ways: |
===Proof 1 (Generalization of Solution 2)=== | ===Proof 1 (Generalization of Solution 2)=== | ||
− | The arithmetic mean of all values for <math>D_1</math> is <math>5,</math> and the arithmetic mean of all values for each of <math>D_2,D_3,\ | + | The arithmetic mean of all values for <math>D_1</math> is <math>5,</math> and the arithmetic mean of all values for each of <math>D_2,D_3,\ldots,D_k</math> is <math>4.5.</math> Together, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
5\left(10^{2k-2}+1\right)+4.5\left(10^{2k-3}+10\right)+4.5\left(10^{2k-4}+10^2\right)+\cdots+4.5\left(10^{k-1}\right)&=5\left(10^{2k-2}+1\right)+4.5\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ | 5\left(10^{2k-2}+1\right)+4.5\left(10^{2k-3}+10\right)+4.5\left(10^{2k-4}+10^2\right)+\cdots+4.5\left(10^{k-1}\right)&=5\left(10^{2k-2}+1\right)+4.5\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ | ||
Line 14: | Line 14: | ||
&=\frac{10^{2k-1}+10^{2k-2}}{2}. | &=\frac{10^{2k-1}+10^{2k-2}}{2}. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | |||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
===Proof 2 (Generalization of Solution 3)=== | ===Proof 2 (Generalization of Solution 3)=== | ||
− | Note that <cmath>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ | + | Note that <cmath>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}=\left(10-D_1\right)\left(10^{2k-2}+1\right)+\left(9-D_2\right)\left(10^{2k-3}+10\right)+\left(9-D_3\right)\left(10^{2k-4}+10^2\right)+\cdots+\left(9-D_k\right)\left(10^{k-1}\right),</cmath> must be another palindrome by symmetry. Therefore, we can pair each <math>(2k-1)</math>-digit palindrome <math>\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}</math> uniquely with another <math>(2k-1)</math>-digit palindrome <math>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}</math> so that they sum to |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
10\left(10^{2k-2}+1\right)+9\left(10^{2k-3}+10\right)+9\left(10^{2k-4}+10^2\right)+\cdots+9\left(10^{k-1}\right)&=10\left(10^{2k-2}+1\right)+9\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ | 10\left(10^{2k-2}+1\right)+9\left(10^{2k-3}+10\right)+9\left(10^{2k-4}+10^2\right)+\cdots+9\left(10^{k-1}\right)&=10\left(10^{2k-2}+1\right)+9\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ | ||
Line 28: | Line 27: | ||
From this symmetry, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is <math>\frac{10^{2k-1}+10^{2k-2}}{2}.</math> | From this symmetry, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is <math>\frac{10^{2k-1}+10^{2k-2}}{2}.</math> | ||
− | As a side note, the total number of <math>(2k-1)</math>-digit palindromes is <math>9\cdot10^{k-1}</math> by the Multiplication Principle. Their sum is <math>\left(10^{2k-1}+10^{2k-2}\right)\cdot\frac{9\cdot10^{k-1}}{2}=\frac{9\cdot\left(10^{3k-2}+10^{3k-3}\right)}{2},</math> as we can match them into <math>\frac{9\cdot10^{k-1}}{2}</math> pairs such that | + | As a side note, the total number of <math>(2k-1)</math>-digit palindromes is <math>9\cdot10^{k-1}</math> by the Multiplication Principle. Their sum is <math>\left(10^{2k-1}+10^{2k-2}\right)\cdot\frac{9\cdot10^{k-1}}{2}=\frac{9\cdot\left(10^{3k-2}+10^{3k-3}\right)}{2},</math> as we can match them into <math>\frac{9\cdot10^{k-1}}{2}</math> pairs such that each pair sums to <math>10^{2k-1}+10^{2k-2}.</math> |
~MRENTHUSIASM | ~MRENTHUSIASM |
Latest revision as of 10:06, 1 February 2022
Further Generalizations
More generally, for every positive integer the arithmetic mean of all the -digit palindromes is In this problem we have from which the answer is
Note that all -digit palindromes are of the form where and Using this notation, we will prove the bolded claim in two different ways:
Proof 1 (Generalization of Solution 2)
The arithmetic mean of all values for is and the arithmetic mean of all values for each of is Together, the arithmetic mean of all the -digit palindromes is ~MRENTHUSIASM
Proof 2 (Generalization of Solution 3)
Note that must be another palindrome by symmetry. Therefore, we can pair each -digit palindrome uniquely with another -digit palindrome so that they sum to From this symmetry, the arithmetic mean of all the -digit palindromes is
As a side note, the total number of -digit palindromes is by the Multiplication Principle. Their sum is as we can match them into pairs such that each pair sums to
~MRENTHUSIASM