Difference between revisions of "Talk:2021 AIME II Problems/Problem 1"

m
m
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<i><b>More generally, for every positive integer <math>\boldsymbol{k,}</math> the arithmetic mean of all the <math>\boldsymbol{(2k-1)}</math>-digit palindromes is <cmath>\boldsymbol{\frac{10^{2k-1}+10^{2k-2}}{2}.}</cmath></b></i> In this problem we have <math>k=2,</math> from which the answer is <math>\frac{10^3+10^2}{2}=550.</math>
 
<i><b>More generally, for every positive integer <math>\boldsymbol{k,}</math> the arithmetic mean of all the <math>\boldsymbol{(2k-1)}</math>-digit palindromes is <cmath>\boldsymbol{\frac{10^{2k-1}+10^{2k-2}}{2}.}</cmath></b></i> In this problem we have <math>k=2,</math> from which the answer is <math>\frac{10^3+10^2}{2}=550.</math>
  
Note that all <math>(2k-1)</math>-digit palindromes are of the form <cmath>\underline{D_1D_2D_3\cdots D_k\cdots D_3D_2D_1}=D_1\left(10^{2k-2}+1\right)+D_2\left(10^{2k-3}+10\right)+D_3\left(10^{2k-4}+10^2\right)+\cdots+D_k\left(10^{k-1}\right),</cmath> where <math>D_1\in\{1,2,3,4,5,6,7,8,9\}</math> and <math>D_2,D_3,\cdots,D_k\in\{0,1,2,3,4,5,6,7,8,9\}.</math> Using this notation, we will prove the bolded claim in two different ways:
+
Note that all <math>(2k-1)</math>-digit palindromes are of the form <cmath>\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}=D_1\left(10^{2k-2}+1\right)+D_2\left(10^{2k-3}+10\right)+D_3\left(10^{2k-4}+10^2\right)+\cdots+D_k\left(10^{k-1}\right),</cmath> where <math>D_1\in\{1,2,3,4,5,6,7,8,9\}</math> and <math>D_2,D_3,\ldots,D_k\in\{0,1,2,3,4,5,6,7,8,9\}.</math> Using this notation, we will prove the bolded claim in two different ways:
  
 
===Proof 1 (Generalization of Solution 2)===
 
===Proof 1 (Generalization of Solution 2)===
The arithmetic mean of all values for <math>D_1</math> is <math>5,</math> and the arithmetic mean of all values for each of <math>D_2,D_3,\cdots,D_k</math> is <math>4.5.</math> Together, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is  
+
The arithmetic mean of all values for <math>D_1</math> is <math>5,</math> and the arithmetic mean of all values for each of <math>D_2,D_3,\ldots,D_k</math> is <math>4.5.</math> Together, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
5\left(10^{2k-2}+1\right)+4.5\left(10^{2k-3}+10\right)+4.5\left(10^{2k-4}+10^2\right)+\cdots+4.5\left(10^{k-1}\right)&=5\left(10^{2k-2}+1\right)+4.5\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\
 
5\left(10^{2k-2}+1\right)+4.5\left(10^{2k-3}+10\right)+4.5\left(10^{2k-4}+10^2\right)+\cdots+4.5\left(10^{k-1}\right)&=5\left(10^{2k-2}+1\right)+4.5\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\
Line 14: Line 14:
 
&=\frac{10^{2k-1}+10^{2k-2}}{2}.
 
&=\frac{10^{2k-1}+10^{2k-2}}{2}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
 
===Proof 2 (Generalization of Solution 3)===
 
===Proof 2 (Generalization of Solution 3)===
Note that <cmath>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\cdots \left(9-D_k\right)\cdots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}=\left(10-D_1\right)\left(10^{2k-2}+1\right)+\left(9-D_2\right)\left(10^{2k-3}+10\right)+\left(9-D_3\right)\left(10^{2k-4}+10^2\right)+\cdots+\left(9-D_k\right)\left(10^{k-1}\right),</cmath> must be another palindrome by symmetry. Therefore, we can pair each <math>(2k-1)</math>-digit palindrome <math>\underline{D_1D_2D_3\cdots D_k\cdots D_3D_2D_1}</math> uniquely with another <math>(2k-1)</math>-digit palindrome <math>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\cdots \left(9-D_k\right)\cdots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}</math> so that they sum to
+
Note that <cmath>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}=\left(10-D_1\right)\left(10^{2k-2}+1\right)+\left(9-D_2\right)\left(10^{2k-3}+10\right)+\left(9-D_3\right)\left(10^{2k-4}+10^2\right)+\cdots+\left(9-D_k\right)\left(10^{k-1}\right),</cmath> must be another palindrome by symmetry. Therefore, we can pair each <math>(2k-1)</math>-digit palindrome <math>\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}</math> uniquely with another <math>(2k-1)</math>-digit palindrome <math>\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}</math> so that they sum to
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
10\left(10^{2k-2}+1\right)+9\left(10^{2k-3}+10\right)+9\left(10^{2k-4}+10^2\right)+\cdots+9\left(10^{k-1}\right)&=10\left(10^{2k-2}+1\right)+9\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\
 
10\left(10^{2k-2}+1\right)+9\left(10^{2k-3}+10\right)+9\left(10^{2k-4}+10^2\right)+\cdots+9\left(10^{k-1}\right)&=10\left(10^{2k-2}+1\right)+9\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\
Line 28: Line 27:
 
From this symmetry, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is <math>\frac{10^{2k-1}+10^{2k-2}}{2}.</math>
 
From this symmetry, the arithmetic mean of all the <math>(2k-1)</math>-digit palindromes is <math>\frac{10^{2k-1}+10^{2k-2}}{2}.</math>
  
As a side note, the total number of <math>(2k-1)</math>-digit palindromes is <math>9\cdot10^{k-1}</math> by the Multiplication Principle. Their sum is <math>\left(10^{2k-1}+10^{2k-2}\right)\cdot\frac{9\cdot10^{k-1}}{2}=\frac{9\cdot\left(10^{3k-2}+10^{3k-3}\right)}{2},</math> as we can match them into <math>\frac{9\cdot10^{k-1}}{2}</math> pairs such that the sum of each pair is <math>10^{2k-1}+10^{2k-2}.</math>
+
As a side note, the total number of <math>(2k-1)</math>-digit palindromes is <math>9\cdot10^{k-1}</math> by the Multiplication Principle. Their sum is <math>\left(10^{2k-1}+10^{2k-2}\right)\cdot\frac{9\cdot10^{k-1}}{2}=\frac{9\cdot\left(10^{3k-2}+10^{3k-3}\right)}{2},</math> as we can match them into <math>\frac{9\cdot10^{k-1}}{2}</math> pairs such that each pair sums to <math>10^{2k-1}+10^{2k-2}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Latest revision as of 10:06, 1 February 2022

Further Generalizations

More generally, for every positive integer $\boldsymbol{k,}$ the arithmetic mean of all the $\boldsymbol{(2k-1)}$-digit palindromes is \[\boldsymbol{\frac{10^{2k-1}+10^{2k-2}}{2}.}\] In this problem we have $k=2,$ from which the answer is $\frac{10^3+10^2}{2}=550.$

Note that all $(2k-1)$-digit palindromes are of the form \[\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}=D_1\left(10^{2k-2}+1\right)+D_2\left(10^{2k-3}+10\right)+D_3\left(10^{2k-4}+10^2\right)+\cdots+D_k\left(10^{k-1}\right),\] where $D_1\in\{1,2,3,4,5,6,7,8,9\}$ and $D_2,D_3,\ldots,D_k\in\{0,1,2,3,4,5,6,7,8,9\}.$ Using this notation, we will prove the bolded claim in two different ways:

Proof 1 (Generalization of Solution 2)

The arithmetic mean of all values for $D_1$ is $5,$ and the arithmetic mean of all values for each of $D_2,D_3,\ldots,D_k$ is $4.5.$ Together, the arithmetic mean of all the $(2k-1)$-digit palindromes is \begin{align*} 5\left(10^{2k-2}+1\right)+4.5\left(10^{2k-3}+10\right)+4.5\left(10^{2k-4}+10^2\right)+\cdots+4.5\left(10^{k-1}\right)&=5\left(10^{2k-2}+1\right)+4.5\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ &=5\left(10^{2k-2}+1\right)+4.5\left(\frac{10^{2k-2}-10}{9}\right) \\ &=5\left(10^{2k-2}+1\right)+\frac{10^{2k-2}-10}{2} \\ &=\frac{10\left(10^{2k-2}+1\right)}{2}+\frac{10^{2k-2}-10}{2} \\ &=\frac{10^{2k-1}+10}{2}+\frac{10^{2k-2}-10}{2} \\ &=\frac{10^{2k-1}+10^{2k-2}}{2}. \end{align*} ~MRENTHUSIASM

Proof 2 (Generalization of Solution 3)

Note that \[\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}=\left(10-D_1\right)\left(10^{2k-2}+1\right)+\left(9-D_2\right)\left(10^{2k-3}+10\right)+\left(9-D_3\right)\left(10^{2k-4}+10^2\right)+\cdots+\left(9-D_k\right)\left(10^{k-1}\right),\] must be another palindrome by symmetry. Therefore, we can pair each $(2k-1)$-digit palindrome $\underline{D_1D_2D_3\ldots D_k\ldots D_3D_2D_1}$ uniquely with another $(2k-1)$-digit palindrome $\underline{\left(10-D_1\right)\left(9-D_2\right)\left(9-D_3\right)\ldots \left(9-D_k\right)\ldots \left(9-D_3\right)\left(9-D_2\right)\left(10-D_1\right)}$ so that they sum to \begin{align*} 10\left(10^{2k-2}+1\right)+9\left(10^{2k-3}+10\right)+9\left(10^{2k-4}+10^2\right)+\cdots+9\left(10^{k-1}\right)&=10\left(10^{2k-2}+1\right)+9\left(10+10^2+\cdots+10^{k-1}+\cdots+10^{2k-4}+10^{2k-3}\right) \\ &=10\left(10^{2k-2}+1\right)+9\left(\frac{10^{2k-2}-10}{9}\right) \\ &=10\left(10^{2k-2}+1\right)+\left(10^{2k-2}-10\right) \\ &=10^{2k-1}+10+10^{2k-2}-10 \\ &=10^{2k-1}+10^{2k-2}. \end{align*} From this symmetry, the arithmetic mean of all the $(2k-1)$-digit palindromes is $\frac{10^{2k-1}+10^{2k-2}}{2}.$

As a side note, the total number of $(2k-1)$-digit palindromes is $9\cdot10^{k-1}$ by the Multiplication Principle. Their sum is $\left(10^{2k-1}+10^{2k-2}\right)\cdot\frac{9\cdot10^{k-1}}{2}=\frac{9\cdot\left(10^{3k-2}+10^{3k-3}\right)}{2},$ as we can match them into $\frac{9\cdot10^{k-1}}{2}$ pairs such that each pair sums to $10^{2k-1}+10^{2k-2}.$

~MRENTHUSIASM