|
|
(11 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | Posting here until I find a place for an upcoming mock I’m creating
| + | Hello. This is Geometry285 |
| | | |
− | {{G285 Mock Problems|year=2021|type=A}}
| + | [[G285 Mock MC Series|G285 Mock MC Series]] |
− | | |
− | ==Problem 1==
| |
− | What value of <math>x</math> minimizes <math>|2^x - 1|</math>?
| |
− | | |
− | <math>\textbf{(A)}\ -1\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \infty</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 1|Solution]] | |
− | | |
− | ==Problem 2==
| |
− | Suppose Mark wanted to arrange <math>5</math> books onto a bookshelf, <math>3</math> of which are math books and <math>2</math> of which are science. If both science and math books are indistinguishable, in how many ways can Mark arrange the books on the shelf?
| |
− | | |
− | <math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 15</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 2|Solution]]
| |
− | | |
− | ==Problem 3==
| |
− | Let <math>ABCD</math> be a unit square. If points <math>E</math> and <math>F</math> are chosen on <math>AB</math> and <math>CD</math> respectively such that the area of <math>\triangle AEF = \frac{3}{2} \triangle CFE</math>. What is <math>EF^2</math>?
| |
− | | |
− | <math>\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}</math>
| |
Latest revision as of 08:47, 12 May 2021