|
|
(5 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | Posting here until I find a place for an upcoming mock I’m creating
| + | Hello. This is Geometry285 |
| | | |
− | {{G285 Mock Problems|year=2021|type=A}}
| + | [[G285 Mock MC Series|G285 Mock MC Series]] |
− | | |
− | ==Problem 1==
| |
− | What value of <math>x</math> minimizes <math>|||2^{|x^2|} - 4|-4|-8|</math>?
| |
− | | |
− | <math>\textbf{(A)}\ -2\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 1|Solution]] | |
− | | |
− | ==Problem 2==
| |
− | Suppose the set <math>S</math> denotes <math>S = \{1,2,3 \cdots n\}</math>. Then, a subset of length <math>1<k<n</math> is chosen. All even digits in the subset <math>k</math> are then are put into group <math>k_1</math>, and the odd digits are put in <math>k_2</math>. Then, one number is selected at random from either <math>k_1</math> or <math>k_2</math> with equal chances. What is the probability that the number selected is a perfect square, given <math>n=4</math>?
| |
− | | |
− | <math>\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{3}{11}\qquad\textbf{(C)}\ \frac{6}{11}\qquad\textbf{(D)}\ \frac{7}{13}\qquad\textbf{(E)}\ \frac{3}{5}</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 2|Solution]]
| |
− | | |
− | ==Problem 3==
| |
− | Let <math>ABCD</math> be a unit square. If points <math>E</math> and <math>F</math> are chosen on <math>AB</math> and <math>CD</math> respectively such that the area of <math>\triangle AEF = \frac{3}{2} \triangle CFE</math>. What is <math>EF^2</math>?
| |
− | | |
− | <math>\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 3|Solution]]
| |
− | | |
− | ==Problem 4==
| |
− | What is the smallest value of <math>k</math> for which <cmath>2^{18k} \equiv 76 \mod 100</cmath>
| |
− | | |
− | <math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20</math>
| |
− | | |
− | [[G285 MC10A Problems/Problem 4|Solution]]
| |