|
(Tag: Redirect target changed) |
(19 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | ==Problem ==
| + | #REDIRECT [[2018_AMC_10B_Problems/Problem_12]] |
− | | |
− | Line segment <math>\overline{AB}</math> is a diameter of a circle with <math>AB = 24</math>. Point <math>C</math>, not equal to <math>A</math> or <math>B</math>, lies on the circle. As point <math>C</math> moves around the circle, the centroid (center of mass) of <math>\triangle ABC</math> traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?
| |
− | | |
− | <math>\textbf{(A) } 25 \qquad \textbf{(B) } 38 \qquad \textbf{(C) } 50 \qquad \textbf{(D) } 63 \qquad \textbf{(E) } 75 </math>
| |
− | | |
− | ==Solution==
| |
− | For each <math>\triangle ABC,</math> note that the length of one median is <math>OC=12.</math> Let <math>G</math> be the centroid of <math>\triangle ABC.</math> It follows that <math>OG=\frac13 OC=4.</math>
| |
− | | |
− | Two shapes of <math>\triangle ABC,</math> namely <math>\triangle ABC_1</math> and <math>\triangle ABC_2</math> with their respective centroids <math>G_1</math> and <math>G_2,</math> are shown below:
| |
− | | |
− | <b>DIAGRAM NEEDED</b>
| |
− | | |
− | Therefore, point <math>G</math> traces out a circle (missing two points) with the center <math>O</math> and the radius <math>\overline{OG},</math> as indicated in red. To the nearest positive integer, the area of the region bounded by the red curve is <math>\pi\cdot OG^2=16\pi\approx\boxed{\textbf{(C) } 50}.</math>
| |
− | | |
− | ~MRENTHUSIASM
| |
− | | |
− | ==See Also==
| |
− | {{AMC12 box|year=2018|ab=B|num-a=9|num-b=7}}
| |
− | {{MAA Notice}}
| |
− | | |
− | [[Category:Intermediate Geometry Problems]] | |