|
|
(26 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_17]] |
− | | |
− | How many ordered pairs of positive integers <math>(b,c)</math> exist where both <math>x^2+bx+c=0</math> and <math>x^2+cx+b=0</math> do not have distinct, real solutions?
| |
− | | |
− | <math>\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad</math>
| |
− | | |
− | == Solution ==
| |
− | A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:
| |
− | <ol style="margin-left: 1.5em;">
| |
− | <li>Since <math>x^2+bx+c=0</math> does not have real solutions, we have <math>b^2\leq 4c.</math></li><p>
| |
− | <li>Since <math>x^2+cx+b=0</math> does not have real solutions, we have <math>c^2\leq 4b.</math></li><p>
| |
− | </ol>
| |
− | Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
| |
− | {{MAA Notice}}
| |