|
|
(19 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_17]] |
− | | |
− | How many ordered pairs of positive integers <math>(b,c)</math> exist where both <math>x^2+bx+c=0</math> and <math>x^2+cx+b=0</math> do not have distinct, real solutions?
| |
− | | |
− | <math>\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad</math>
| |
− | | |
− | == Solution 1 (Casework) ==
| |
− | A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:
| |
− | <ol style="margin-left: 1.5em;">
| |
− | <li>Since <math>x^2+bx+c=0</math> does not have real solutions, we have <math>b^2\leq 4c.</math></li><p>
| |
− | <li>Since <math>x^2+cx+b=0</math> does not have real solutions, we have <math>c^2\leq 4b.</math></li><p>
| |
− | </ol>
| |
− | Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
| |
− | Note that:
| |
− | | |
− | * If <math>b=1,</math> then <math>1\leq 16c^2\leq 64,</math> from which <math>c=1,2.</math>
| |
− | | |
− | * If <math>b=2,</math> then <math>16\leq 16c^2\leq 128,</math> from which <math>c=1,2.</math>
| |
− | | |
− | * If <math>b=3,</math> then <math>81\leq 16c^2\leq 192,</math> from which <math>c=3.</math>
| |
− | | |
− | * If <math>b=4,</math> then <math>256\leq 16c^2\leq 256,</math> from which <math>c=4.</math>
| |
− | | |
− | Together, there are <math>\boxed{\textbf{(B) } 6}</math> ordered pairs <math>(b,c),</math> namely <math>(1,1),(1,2),(2,1),(2,2),(3,3),</math> and <math>(4,4).</math>
| |
− | | |
− | ~MRENTHUSIASM
| |
− | | |
− | ==Solution 2 (Oversimplified but risky)==
| |
− | A quadratic equation has one solution if and only if <math>\sqrt {b^2-4ax}</math> is <math>0.</math> Similarly, it is imaginary if and only if <math>\sqrt {b^2-4ax}</math> is less than one. We proceed as following:
| |
− | | |
− | We want both <math>x^2+bx+c</math> to be <math>1</math> value or imaginary and <math>x^2+cx+b</math> to be <math>1</math> value or imaginary. <math>x^2+4x+4</math> is one such case since <math>\sqrt {b^2-4ac}</math> is <math>0.</math> Also, <math>x^2+3x+3, x^2+2x+2, x^2+x+1</math> are always imaginary for both <math>b</math> and <math>c.</math> We also have <math>x^2+x+2</math> along with <math>x^2+2x+1</math> since the latter has one solution, while the first one is imaginary. Therefore, we have <math>6</math> total ordered pairs of integers, which is <math>\boxed{\textbf{(B) } 6}.</math>
| |
− | | |
− | ~Arcticturn
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
| |
− | {{MAA Notice}}
| |