|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 1]] |
− | | |
− | In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD}, AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math>
| |
− | | |
− | == Solution ==
| |
− | | |
− | From the problem statement, we construct the following diagram: <div style="text-align:center">[[Image:Aime06i.1.PNG]]</div>
| |
− | | |
− | Using the [[Pythagorean Theorem]]:
| |
− | | |
− | <div style="text-align:center"><math> (AD)^2 = (AC)^2 + (CD)^2 </math></div>
| |
− | | |
− | <div style="text-align:center"><math> (AC)^2 = (AB)^2 + (BC)^2 </math></div>
| |
− | | |
− | Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>:
| |
− | | |
− | <div style="text-align:center"><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></div>
| |
− | | |
− | Plugging in the given information:
| |
− | | |
− | <div style="text-align:center"><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></div>
| |
− | | |
− | <div style="text-align:center"><math> (AD)^2 = 961 </math></div>
| |
− | | |
− | <div style="text-align:center"><math> (AD)= 31 </math></div>
| |
− | | |
− | So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>084</math>.
| |
− | | |
− | == See also ==
| |
− | {{AIME box|year=2006|n=II|before=First Problem|num-a=2}}
| |
− | | |
− | [[Category:Intermediate Geometry Problems]]
| |