Difference between revisions of "User:Temperal/sandbox"

(Problem 1)
 
(35 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Template:Chess position|<!--
+
==Problem 1==
8 --> |  |  |  |  |  |  |  |<!--
+
 
7 -->pd|  |  |  |  |pd|pd|pd|<!--
+
Evaluate the following expressions:
6 --> |  |  |  |  |kd|  |  |<!--
+
 
5 --> |pd|  |  |  |  |  |  |<!--
+
(a) <math>\tan(45^\circ)</math>
4 --> |  |  |nl|  |  |  |  |<!--
+
 
3 --> |  |  |  |  |  |kl|  |<!--
+
(b) <math>\cos\left(\frac {7\pi}{4}\right)</math>
2 -->pl|pl|  |  |rl|  |pl|pl|<!--
+
 
1 --> |  |rd|  |  |  |  |  }}
+
(c) <math>\sin\left(\frac {5\pi}{3}\right)</math>
<!-- a  b  c  d  e  f  g  h  -->
+
 
 +
(d) <math>\csc(135^\circ)</math>
 +
 
 +
(e) <math>\cot(945^\circ)</math>
 +
 
 +
(f) <math>\sin(\pi \sin(\pi/6))</math>
 +
 
 +
(g) <math>\tan(21\pi)</math>
 +
 
 +
(h) <math>\sec( - 585^\circ)</math>
 +
 
 +
==Problem 2==
 +
 
 +
Using the unit circle, find <math>\sin \left( x + \frac {\pi}{2} \right)</math> and <math>\cos \left( x + \frac {\pi}{2} \right)</math> in terms of <math>\sin x</math> and <math>\cos x</math>.
 +
 
 +
 
 +
==Problem 3==
 +
 
 +
In triangle <math>ABC</math>, <math>\angle B = 90^\circ</math>, <math>\sin A = 7/9</math>, and <math>BC = 21</math>. What is <math>AB</math>?
 +
 
 +
==Problem 4==
 +
 
 +
What does the graph of <math>\sin 4x</math> look like compared to the graphs of <math>\sin x</math> and <math>\cos x</math>? What about the graph of <math>2\sin \left( 3x + \frac {\pi}{4} \right) - 1</math>?
 +
 
 +
 
 +
 
 +
==Problem 5==
 +
 
 +
Find the value of <math>\tan(\pi/12) \cdot \tan(2\pi/12) \cdot \tan(3\pi/12) \cdots \tan(5\pi/12).</math>
 +
 
 +
 
 +
 
 +
 
 +
==Problem 6==
 +
 
 +
Suppose that parallelogram <math>ABCD</math> has <math>\angle A = \angle C = 30^\circ</math>, <math>\angle B = \angle D = 150^\circ</math>, and the shorter diagonal <math>BD</math> has length 2. If the height of the parallelogram is <math>a</math>, find the perimeter of <math>ABCD</math> in terms of <math>a</math>.
 +
 
 +
 
 +
 
 +
==Problem 7==
 +
 
 +
Given a positive number <math>n</math> and a number <math>c</math> satisfying <math>- 1 < c < 1</math>, for how many values of <math>q</math> with <math>0 \leq q < 2\pi</math> is <math>\sin nq = c</math>? What if <math>c = 1</math> or <math>c = - 1</math>?
 +
 
 +
 
 +
 
 +
==Problem 8==
 +
 
 +
How many solutions are there to the equation <math>\cos x = \frac {x^2}{1000}</math>, where <math>x</math> is in radians?
 +
 
 +
 
 +
 
 +
==Problem 9==
 +
 
 +
Determine all <math>\theta</math> such that <math>0 \le \theta \le \frac {\pi}{2}</math> and <math>\sin^5\theta + \cos^5\theta = 1</math>.
 +
 
 +
 
 +
 
 +
 
 +
==Problem 10==
 +
 
 +
Find the value of <math>\sin(15^\circ)</math>. Hint: Draw an isosceles triangle with vertex angle <math>30^\circ</math>.

Latest revision as of 12:28, 24 March 2020

Problem 1

Evaluate the following expressions:

(a) $\tan(45^\circ)$

(b) $\cos\left(\frac {7\pi}{4}\right)$

(c) $\sin\left(\frac {5\pi}{3}\right)$

(d) $\csc(135^\circ)$

(e) $\cot(945^\circ)$

(f) $\sin(\pi \sin(\pi/6))$

(g) $\tan(21\pi)$

(h) $\sec( - 585^\circ)$

Problem 2

Using the unit circle, find $\sin \left( x + \frac {\pi}{2} \right)$ and $\cos \left( x + \frac {\pi}{2} \right)$ in terms of $\sin x$ and $\cos x$.


Problem 3

In triangle $ABC$, $\angle B = 90^\circ$, $\sin A = 7/9$, and $BC = 21$. What is $AB$?

Problem 4

What does the graph of $\sin 4x$ look like compared to the graphs of $\sin x$ and $\cos x$? What about the graph of $2\sin \left( 3x + \frac {\pi}{4} \right) - 1$?


Problem 5

Find the value of $\tan(\pi/12) \cdot \tan(2\pi/12) \cdot \tan(3\pi/12) \cdots \tan(5\pi/12).$



Problem 6

Suppose that parallelogram $ABCD$ has $\angle A = \angle C = 30^\circ$, $\angle B = \angle D = 150^\circ$, and the shorter diagonal $BD$ has length 2. If the height of the parallelogram is $a$, find the perimeter of $ABCD$ in terms of $a$.


Problem 7

Given a positive number $n$ and a number $c$ satisfying $- 1 < c < 1$, for how many values of $q$ with $0 \leq q < 2\pi$ is $\sin nq = c$? What if $c = 1$ or $c = - 1$?


Problem 8

How many solutions are there to the equation $\cos x = \frac {x^2}{1000}$, where $x$ is in radians?


Problem 9

Determine all $\theta$ such that $0 \le \theta \le \frac {\pi}{2}$ and $\sin^5\theta + \cos^5\theta = 1$.



Problem 10

Find the value of $\sin(15^\circ)$. Hint: Draw an isosceles triangle with vertex angle $30^\circ$.