Difference between revisions of "Partial derivative"
(Created page (will add divergence and curl later).) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
===Divergence=== | ===Divergence=== | ||
+ | When <math>\mathbf{f}</math> is a [[vector]]-valued function or vector field whose values are in the same dimensions as its arguments, the [[Vector#Dot(Scalar) Product|dot product]] of <math>\nabla</math> with <math>\mathbf{f}</math> yields the '''divergence''' <cmath>\nabla \cdot \mathbf{f} = \frac{\partial \mathbf{f}_{x_1}}{\partial x_1} + \frac{\partial \mathbf{f}_{x_2}}{\partial x_2} + \dots + \frac{\partial \mathbf{f}_{x_n}}{\partial x_n},</cmath> | ||
+ | where the notation <math>\mathbf{f}_{x_i}</math> refers to the <math>x_i</math>-direction component of vector <math>\mathbf{f}</math>. | ||
+ | |||
+ | Informally, the divergence measures how much the field "spreads out" from a point. This is because the term in the sum corresponding to each dimension is positive if the change in the component of the field in the dimension agrees with change in the the argument coordinate in the dimension (pushing the field away from the point) and negative if the change in the component disagrees with change in the coordinate (pulling the field toward the point), with magnitude determined by the rate of such change of the field. | ||
===Curl=== | ===Curl=== | ||
+ | If <math>\mathbf{f}</math> has values and arguments in three dimensions (here <math>x</math>, <math>y</math>, and <math>z</math>), then we can also take the cross product of <math>\nabla</math> and <math>\mathbf{f}</math> to obtain the '''curl''' as follows: <cmath>\nabla \times \mathbf{f} = \left( \frac{\partial \mathbf{f}_z}{\partial y} - \frac{\partial \mathbf{f}_y}{\partial z}, \frac{\partial \mathbf{f}_x}{\partial z} - \frac{\partial \mathbf{f}_z}{\partial x}, \frac{\partial \mathbf{f}_y}{\partial x} - \frac{\partial \mathbf{f}_x}{\partial y} \right).</cmath> | ||
+ | |||
+ | Because the cross product is perpendicular to its factors, and its magnitude is determined by how nearly perpendicular to each other the factors are, curl measures change of the field perpendicular to change in position; hence, how much the field curves around the point. According to the curl right-hand rule, the direction of the field around a point is counterclockwise from the perspective of the head of the curl vector at the point. | ||
==Applications== | ==Applications== | ||
+ | Partial derivatives (the gradient in particular) are crucial in multiple [[linear regression]] and therefore in artificial intelligence and machine learning. | ||
== See also == | == See also == |
Latest revision as of 19:51, 4 May 2022
A partial derivative of a function of many variables is the derivative of that function with respect to one of its arguments.
For example, if then has three partial derivatives at the point :
Del operator
The del operator, or nabla symbol, written , represents the vector where the value is the arity (number of arguments) of the function in question.
Gradient
The product of and a function is a vector storing, in order, all of the partial derivatives of .
The gradient applies when is a scalar-valued function of many variables. For example, the gradient of temperature in a closed room is , where , , and are the Cartesian coordinates in the three spatial dimensions: length, width, and height, respectively. and are likely to be close to zero at most points, but probably has a small positive value, since the air nearer the ceiling (greater ) is warmer than the air nearer the floor (lesser ). Therefore, the typical direction of the gradient vector is close to upwards.
Divergence
When is a vector-valued function or vector field whose values are in the same dimensions as its arguments, the dot product of with yields the divergence where the notation refers to the -direction component of vector .
Informally, the divergence measures how much the field "spreads out" from a point. This is because the term in the sum corresponding to each dimension is positive if the change in the component of the field in the dimension agrees with change in the the argument coordinate in the dimension (pushing the field away from the point) and negative if the change in the component disagrees with change in the coordinate (pulling the field toward the point), with magnitude determined by the rate of such change of the field.
Curl
If has values and arguments in three dimensions (here , , and ), then we can also take the cross product of and to obtain the curl as follows:
Because the cross product is perpendicular to its factors, and its magnitude is determined by how nearly perpendicular to each other the factors are, curl measures change of the field perpendicular to change in position; hence, how much the field curves around the point. According to the curl right-hand rule, the direction of the field around a point is counterclockwise from the perspective of the head of the curl vector at the point.
Applications
Partial derivatives (the gradient in particular) are crucial in multiple linear regression and therefore in artificial intelligence and machine learning.