|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | This page is a duplicate of this [https://artofproblemsolving.com/wiki/index.php/1985_AJHSME_Problems/Problem_1 webpage]. |
− | | |
− | <math>\frac{3times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=</math>
| |
− | | |
− | <cmath>\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)} \frac{1}{49}\ \qquad \text{(E)}\ 50</cmath>
| |
− | | |
− | ==Solution==
| |
− | | |
− | <math>\frac{3\times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}= \frac{3 \times 5 \times 7 \times 9 \times 11}{9 \times 11 \times 3 \times 5 \times 7} = \boxed{1}</math>
| |
− | | |
− | The answer is <math>\text{(A) 1}.</math>
| |
− | | |
− | | |
− | | |
− | ==Solution==
| |
− | | |
− | the numeretor is 3*5*7*9*11, so is the denominator so (3*5*7*9*11)/(3*5*7*9*11)=1
| |
− | | |
− | | |
− | -mathmax12
| |
− | | |
− | ==Video Solution==
| |
− | https://youtu.be/dszCk0HVWH8
| |
− | | |
− | ~savannahsolver
| |
− | | |
− | == See Also ==
| |
− | {{AJHSME box|year=1985|num-b=0|num-a=2}}
| |
− | {{MAA Notice}}
| |
Latest revision as of 21:24, 12 March 2023
This page is a duplicate of this webpage.