Difference between revisions of "1982 AHSME Problems/Problem 10"
m (→Problem 10 Solution) |
Tecilis459 (talk | contribs) (Add problem statement) |
||
Line 1: | Line 1: | ||
− | == Problem 10 Solution == | + | == Problem == |
+ | |||
+ | In the adjoining diagram, <math>BO</math> bisects <math>\angle CBA</math>, <math>CO</math> bisects <math>\angle ACB</math>, and <math>MN</math> is parallel to <math>BC</math>. | ||
+ | If <math>AB=12, BC=24</math>, and <math>AC=18</math>, then the perimeter of <math>\triangle AMN</math> is | ||
+ | |||
+ | <asy> | ||
+ | size(200); | ||
+ | defaultpen(linewidth(0.7)+fontsize(10)); | ||
+ | pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0)); | ||
+ | draw(B--M--O--B--C--O--N--C^^N--A--M); | ||
+ | label("$A$", A, dir(90)); | ||
+ | label("$B$", B, dir(O--B)); | ||
+ | label("$C$", C, dir(O--C)); | ||
+ | label("$M$", M, dir(90)*dir(B--A)); | ||
+ | label("$N$", N, dir(90)*dir(A--C)); | ||
+ | label("$O$", O, dir(90));</asy> | ||
+ | |||
+ | <math>\textbf {(A)}\ 30 \qquad | ||
+ | \textbf {(B)}\ 33 \qquad | ||
+ | \textbf {(C)}\ 36 \qquad | ||
+ | \textbf {(D)}\ 39 \qquad | ||
+ | \textbf {(E)}\ 42 </math> | ||
+ | |||
+ | == Solution == | ||
Since <math>BO</math> and <math>CO</math> are angle bisectors of angles <math>B</math> and <math>C</math> respectively, <math>\angle MBO = \angle OBC</math> and similarly <math>\angle NCO = \angle OCB</math>. Because <math>MN</math> and <math>BC</math> are parallel, <math>\angle OBC = \angle MOB</math> and <math>\angle NOC = \angle OCB</math> by corresponding angles. This relation makes <math>\triangle MOB</math> and <math>\triangle NOC</math> isosceles. This makes <math>MB = MO</math> and <math>NO = NC</math>. <math>AM</math> + <math>MB</math> = 12, and <math>AN</math> + <math>NC</math> = 18. So, <math>AM</math> + <math>MO</math> = 12, and <math>AN</math> + <math>NO</math> = 18, and those are all of the lengths that make up <math>\triangle AMN</math>. Therefore, the perimeter of <math>\triangle AMN</math> is <math>12 + 18 = 30</math>. The answer is <math>\boxed{A}</math>. | Since <math>BO</math> and <math>CO</math> are angle bisectors of angles <math>B</math> and <math>C</math> respectively, <math>\angle MBO = \angle OBC</math> and similarly <math>\angle NCO = \angle OCB</math>. Because <math>MN</math> and <math>BC</math> are parallel, <math>\angle OBC = \angle MOB</math> and <math>\angle NOC = \angle OCB</math> by corresponding angles. This relation makes <math>\triangle MOB</math> and <math>\triangle NOC</math> isosceles. This makes <math>MB = MO</math> and <math>NO = NC</math>. <math>AM</math> + <math>MB</math> = 12, and <math>AN</math> + <math>NC</math> = 18. So, <math>AM</math> + <math>MO</math> = 12, and <math>AN</math> + <math>NO</math> = 18, and those are all of the lengths that make up <math>\triangle AMN</math>. Therefore, the perimeter of <math>\triangle AMN</math> is <math>12 + 18 = 30</math>. The answer is <math>\boxed{A}</math>. |
Latest revision as of 12:31, 16 July 2024
Problem
In the adjoining diagram, bisects , bisects , and is parallel to . If , and , then the perimeter of is
Solution
Since and are angle bisectors of angles and respectively, and similarly . Because and are parallel, and by corresponding angles. This relation makes and isosceles. This makes and . + = 12, and + = 18. So, + = 12, and + = 18, and those are all of the lengths that make up . Therefore, the perimeter of is . The answer is .