Difference between revisions of "Radon's Inequality"

(Created page with "Radon's Inequality states: <cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n...")
 
m
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath>
 
<cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath>
  
It is a direct consequence of  [[Hölder's Inequality]], and a generalization of [[Titu's Lemma]].
+
It is a direct consequence of  [[Hölder's Inequality]], and a generalization of [[Titu's Lemma]] (for p=1, it is just that).
  
 
=== Proof ===
 
=== Proof ===
Line 9: Line 9:
 
Just apply Hölder for:
 
Just apply Hölder for:
  
<cmath>(b_1 + b_2 + \cdots+ b_n )^{\frac{p}{p+1}}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{\frac{1}{p+1}} \geq a_1 + a_2 + \cdots+ a_n </cmath>
+
<cmath>(b_1 + b_2 + \cdots+ b_n )^{p/(p+1)}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{1/(p+1)} \geq a_1 + a_2 + \cdots+ a_n  \Leftrightarrow</cmath>
 +
<cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath>
 +
 
 +
=== Further Generalizations ===
 +
 
 +
<cmath> \frac{ a_1^{p+m} } { b_1^p } + \frac{ a_2 ^{p+m} } { b_2^p } + \cdots + \frac{ a_n ^{p+m} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+m} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath>

Latest revision as of 08:00, 11 August 2024

Radon's Inequality states:

\[\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p}\]

It is a direct consequence of Hölder's Inequality, and a generalization of Titu's Lemma (for p=1, it is just that).

Proof

Just apply Hölder for:

\[(b_1 + b_2 + \cdots+ b_n )^{p/(p+1)}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{1/(p+1)} \geq a_1 + a_2 + \cdots+ a_n  \Leftrightarrow\] \[\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p}\]

Further Generalizations

\[\frac{ a_1^{p+m} } { b_1^p } + \frac{ a_2 ^{p+m} } { b_2^p } + \cdots + \frac{ a_n ^{p+m} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+m} } { (b_1 + b_2 + \cdots+ b_n )^p}\]