Difference between revisions of "2014 AMC 12A Problems/Problem 24"
m (It's 601 + 1, not 701 + 1) |
(→Solution 2) |
||
Line 126: | Line 126: | ||
Putting these together, all even <math>x</math> where <math>-300 \le x \le 300</math> work. So, the answer is <math>2\cdot150+1 = \boxed{\textbf{(C)}\ 301}</math>. | Putting these together, all even <math>x</math> where <math>-300 \le x \le 300</math> work. So, the answer is <math>2\cdot150+1 = \boxed{\textbf{(C)}\ 301}</math>. | ||
~revised by [[User:emerald_block|emerald_block]] | ~revised by [[User:emerald_block|emerald_block]] | ||
+ | |||
+ | ==Solution 3== | ||
+ | Note <math>f_{100}(x) = 0</math> when <math>|f_{99}(x)| -1</math> = 0. This occurs when <math>f_{99}(x) = \pm 1</math>. | ||
+ | |||
+ | Then, repeating this process, we note <math>f_{99}(x) = \pm 1 \implies |f_{98}(x)| = 0, 2</math>, and hence <math>f_{98}(x) = 0, \pm 2</math>. | ||
+ | |||
+ | Similarly, <math>f_{97}(x) = \pm 1, \pm 3</math>. Extrapolating this pattern, we must have <math>f_{0}(x) = 0, \pm 2</math>, <math>\dots</math>, <math>\pm 100</math>. Then, drawing the graph of <math>f_0</math>, | ||
+ | <asy> | ||
+ | unitsize(0); | ||
+ | |||
+ | int w = 250; | ||
+ | int h = 125; | ||
+ | |||
+ | xaxis(-w,w,Ticks(100.0),Arrows); | ||
+ | yaxis(-h,h,Ticks(100.0),Arrows); | ||
+ | |||
+ | real f0(real x) { return x + abs(x-100) - abs(x+100); } | ||
+ | draw(graph(f0,-w,w),Arrows); | ||
+ | label("$f_0$",(-w,f0(-w)),W); | ||
+ | </asy> | ||
+ | we note for each of <math>0, \pm 2</math>, <math>\dots</math>, <math>\pm 98</math>, there are three solutions. For <math>\pm 100</math>, there is exactly <math>2</math> solutions. | ||
+ | |||
+ | So, the total amount of solutions is <math>99 \cdot 3 + 2 \cdot 2 = \boxed{\textbf{(C) }301}</math> | ||
== Video Solution by Richard Rusczyk == | == Video Solution by Richard Rusczyk == |
Latest revision as of 15:42, 1 November 2024
Contents
Problem
Let , and for , let . For how many values of is ?
Solution 1
1. Draw the graph of by dividing the domain into three parts.
2. Apply the recursive rule a few times to find the pattern.
Note: is used to enlarge the difference, but the reasoning is the same.
3. Extrapolate to . Notice that the summits start away from and get closer each iteration, so they reach exactly at .
reaches at , then zigzags between and , hitting at every even , before leaving at .
This means that at all even where . This is a -integer odd-size range with even numbers at the endpoints, so just over half of the integers are even, or . (Revised by Flamedragon & Jason,C & emerald_block)
Solution 2
First, notice that the recursive rule moves the current value closer to . Upon reaching , it alternates between and . This means that exactly when (to reach in time) and is even (so ).
Casework each part of (where the expressions in the absolute values do not change sign): so even work. so even work. so even work.
Putting these together, all even where work. So, the answer is . ~revised by emerald_block
Solution 3
Note when = 0. This occurs when .
Then, repeating this process, we note , and hence .
Similarly, . Extrapolating this pattern, we must have , , . Then, drawing the graph of , we note for each of , , , there are three solutions. For , there is exactly solutions.
So, the total amount of solutions is
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2014amc12a/383
~ dolphin7
See Also
2014 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.