Difference between revisions of "2008 AMC 8 Problems/Problem 22"

(Solution 3)
(Solution 4)
 
(6 intermediate revisions by 5 users not shown)
Line 25: Line 25:
 
- kn07
 
- kn07
  
==
+
==Solution 3==
 +
 
 +
We can create a list of the positive integers <math>n</math> that fulfill the requirement of <math>\frac {n}{3}</math> and <math>3n</math> are three-digit whole numbers. The first number of this list must be <math>300</math> since <math>\frac {300}{3} = 100</math> is the smallest positive integer that satisfies this requirement. The last number of this list must be <math>333</math> since <math>3 \cdot 333 = 999</math> is the largest positive integer that satisfies this requirement. Since the problem requires <math>\frac {n}{3}</math> and <math>3n</math> must be whole numbers, the other numbers must be multiples of 3 (just like 300 and 333), so the list would look like this:
 +
                                            <math>300, 303, 306, . . . , 333</math>
 +
To put this list in to a countable form we must put it in a form similar to <math>1,2,3, . . ., n</math>. So, we manipulate it as follows:
 +
                          <math>300-300,303-300,306-300, . . .,333-300 \Rightarrow 0,3,6, . . ., 33</math>
 +
 
 +
                          <math>\frac{0}{3}, \frac{3}{3}, \frac{6}{3}, . . ., \frac{33}{3} \Rightarrow 0,1,2, . . ., 11</math>
 +
 
 +
                              <math>0+1,1+1,1+2, . . ., 11+1 \Rightarrow 1,2,3, . . ., 12</math>
  
 +
Now we can tell that there are 12 positive integers which satisfies the two requirements, so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
  
 +
~julia333                 
  
==Solution 3==
+
==Solution 4==
 +
 
 +
We have to find the range for all numbers first. We can first find the smallest digit in which <math>\frac {n}{3}</math> is a 3 digit number that 3n is a 3 digit number which is <math>\frac {300}{3}</math> = 100, then we find the biggest number in which <math>\frac {n}{3}</math> is a 3 digit number and 3n is a 3 digit number which is <math>\frac {333}{3}</math> = 111. Now we know that all integers from 100 to 111 are possible values and the amount of integer values in that range is <math>\boxed{\textbf{(A)}\ 12}</math> (note I divided the numbers by 3 for convenience)
  
So we know the largest <math>3</math> digit number is <math>999</math> and the lowest is <math>100</math>. This means <math>\dfrac{n}{3} \ge 100 \rightarrow n \ge 300</math> but <math>3n \le 999 \rightarrow n \le 333</math>. So we have the set <math>{300, 301, 302, \cdots, 330, 331, 332, 333}</math> for <math>n</math>. Now we have to find the multiples of <math>3</math> suitable for <math>n</math>, or else <math>\dfrac{n}{3}</math> will be a decimal. Only numbers <math>{300, 303, \cdots, 333}</math> are counted. We can  divide by <math>3</math> to make the difference <math>1</math> again, getting <math>{100, 101 \cdots , 111}</math>. Due to it being inclusive, we have <math>111-100+1 =\boxed{\textbf{(A) } 12}</math>
+
~twinotter
  
 
==Video Solution by OmegaLearn==
 
==Video Solution by OmegaLearn==

Latest revision as of 15:34, 11 October 2024

Problem

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution 1

Instead of finding n, we find $x=\frac{n}{3}$. We want $x$ and $9x$ to be three-digit whole numbers. The smallest three-digit whole number is $100$, so that is our minimum value for $x$, since if $x \in \mathbb{Z^+}$, then $9x \in \mathbb{Z^+}$. The largest three-digit whole number divisible by $9$ is $999$, so our maximum value for $x$ is $\frac{999}{9}=111$. There are $12$ whole numbers in the closed set $\left[100,111\right]$ , so the answer is $\boxed{\textbf{(A)}\ 12}$.

- ColtsFan10

Solution 2

We can set the following inequalities up to satisfy the conditions given by the question, $100 \leq \frac{n}{3} \leq 999$, and $100 \leq 3n \leq 999$. Once we simplify these and combine the restrictions, we get the inequality, $300 \leq n \leq 333$. Now we have to find all multiples of 3 in this range for $\frac{n}{3}$ to be an integer. We can compute this by setting $\frac{n} {3}=x$, where $x \in \mathbb{Z^+}$. Substituting $x$ for $n$ in the previous inequality, we get, $100 \leq x \leq 111$, and there are $111-100+1$ integers in this range giving us the answer, $\boxed{\textbf{(A)}\ 12}$.

- kn07

Solution 3

We can create a list of the positive integers $n$ that fulfill the requirement of $\frac {n}{3}$ and $3n$ are three-digit whole numbers. The first number of this list must be $300$ since $\frac {300}{3} = 100$ is the smallest positive integer that satisfies this requirement. The last number of this list must be $333$ since $3 \cdot 333 = 999$ is the largest positive integer that satisfies this requirement. Since the problem requires $\frac {n}{3}$ and $3n$ must be whole numbers, the other numbers must be multiples of 3 (just like 300 and 333), so the list would look like this:

                                            $300, 303, 306, . . . , 333$

To put this list in to a countable form we must put it in a form similar to $1,2,3, . . ., n$. So, we manipulate it as follows:

                         $300-300,303-300,306-300, . . .,333-300 \Rightarrow 0,3,6, . . ., 33$
                         $\frac{0}{3}, \frac{3}{3}, \frac{6}{3}, . . ., \frac{33}{3} \Rightarrow 0,1,2, . . ., 11$
                              $0+1,1+1,1+2, . . ., 11+1 \Rightarrow 1,2,3, . . ., 12$

Now we can tell that there are 12 positive integers which satisfies the two requirements, so the answer is $\boxed{\textbf{(A)}\ 12}$.

~julia333

Solution 4

We have to find the range for all numbers first. We can first find the smallest digit in which $\frac {n}{3}$ is a 3 digit number that 3n is a 3 digit number which is $\frac {300}{3}$ = 100, then we find the biggest number in which $\frac {n}{3}$ is a 3 digit number and 3n is a 3 digit number which is $\frac {333}{3}$ = 111. Now we know that all integers from 100 to 111 are possible values and the amount of integer values in that range is $\boxed{\textbf{(A)}\ 12}$ (note I divided the numbers by 3 for convenience)

~twinotter

Video Solution by OmegaLearn

https://youtu.be/rQUwNC0gqdg?t=230

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png