Difference between revisions of "Pell equation"
Jinzhenqian (talk | contribs) (→Family of solutions) |
Jinzhenqian (talk | contribs) (→Family of solutions) |
||
Line 34: | Line 34: | ||
Therefore, such <math>(p,q)</math> cannot exist and so the method of composition generates every possible solution to Pell's equation. | Therefore, such <math>(p,q)</math> cannot exist and so the method of composition generates every possible solution to Pell's equation. | ||
− | For a Pell equation in form of <math>x^2-Dy^2 = 1</math>, its roots are in the form of <math>(x_{0} + \sqrt{D}y_0)^k</math>, in which x_{0} and y_{0} are the elementery roots of the Pell equation. | + | For a Pell equation in form of <math>x^2-Dy^2 = 1</math>, its roots are in the form of <math>(x_{0} + \sqrt{D}y_0)^k</math>, in which <math>x_{0}</math> and <math>y_{0}</math> are the elementery roots of the Pell equation. |
Q.E.D. | Q.E.D. |
Latest revision as of 09:20, 29 October 2023
A Pell equation is a type of diophantine equation in the form for a natural number . Generally, is taken to be square-free, since otherwise we can "absorb" the largest square factor into by setting .
Note that if is a perfect square, then this problem can be solved using difference of squares. We would have , from which we can use casework to quickly determine the solutions.
Alternatively, if D is a nonsquare then there are infinitely many distinct solutions to the pell equation. To prove this it must first be shown that there is a single solution to the pell equation.
Claim: If D is a positive integer that is not a perfect square, then the equation has a solution in positive integers.
Proof: Let be an integer greater than 1. We will show that there exists integers and such that with . Consider the sequence . By the pigeon hole principle it can be seen that there exists i, j, and p such that i < j, and
.
So we now have
.
We can now create a sequence of such that and which implies r and s. However we can see by the pigeon hole principle that there is another infinite sequence which will be denoted by such that . Once again, from the pigeon hole principle we can see that there exist integers f and g such that mod H, mod H, and . Define and notice that . Also note that mod H which means that Y = 0 mod H also. We can now see that is a nontrivial solution to pell's equation.
Contents
Family of solutions
Let be the minimal solution to the equation . Note that if are solutions to this equation then which means is another solution. From this we can guess that is obtained from . This does indeed generate all the solutions to this equation. Assume there was another solution . If is non-minimal, then there exists some integer such that
Next, multiply the inequality by to obtain:
.
However, it can be seen that
Meaning is a solution smaller than the minimal solution which is a contradiction.
Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.
For a Pell equation in form of , its roots are in the form of , in which and are the elementery roots of the Pell equation.
Q.E.D.
Continued fractions
The solutions to the Pell equation when is not a perfect square are connected to the continued fraction expansion of . If is the period of the continued fraction and is the th convergent, all solutions to the Pell equation are in the form for positive integer .
Generalization
A Pell-like equation is a diophantine equation of the form , where is a natural number and is an integer.
Introductory Problems
Show that if and are the solutions to the equation , then .
Intermediate Problems
- Find the largest integer satisfying the following conditions:
- (i) can be expressed as the difference of two consecutive cubes;
- (ii) is a perfect square. (Source)