|
|
(7 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Cities <math>A</math> and <math>B</math> are <math>45</math> miles apart. Alicia lives in <math>A</math> and Beth lives in <math>B</math>. Alicia bikes towards <math>B</math> at 18 miles per hour. Leaving at the same time, Beth bikes toward <math>A</math> at 12 miles per hour. How many miles from City <math>A</math> will they be when they meet?
| + | #redirect[[2023 AMC 12A Problems/Problem 1]] |
− | | |
− | <cmath>\textbf{(A) }20\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27</cmath>
| |
− | | |
− | ==Solution==
| |
− | This is a Distance=Time<math>\times</math>Speed so let <math>x</math> be the time it takes to meet. We can write the following equation:
| |
− | <cmath>12x+18x=45</cmath>
| |
− | Solving gives is <math>x=1.5</math>. The <math>18x</math> is Alicia so <math>18\times1.5=\boxed{\text{(E) 27}}</math>
| |
− | | |
− | ~zhenghua
| |