|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | When the roots of the polynomial
| + | #redirect[[2023 AMC 12B Problems/Problem 6]] |
− | | |
− | <math>P(x) = (x-1)^1 (x-2)^2 (x-3)^3 \cdot \cdot \cdot (x-10)^{10}</math>
| |
− | | |
− | are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is <math>P(x)</math> positive?
| |
− | | |
− | ==Solution 1==
| |
− | | |
− | <math>P(x)</math> is a product of <math>(x-r_n)</math> or 10 terms. When <math>x < 1</math>, all terms are <math>< 0</math>, but <math>P(x) > 0</math> because there is an even number of terms. The sign keeps alternating <math>+,-,+,-,....,+</math>. There are 11 intervals, so there are <math>\boxed{\textbf{ 6}}</math> positives and 5 negatives. <math>\boxed{\textbf{(C) 6}}</math>
| |
− | | |
− | ~<math>\textbf{Techno}\textcolor{red}{doggo}</math>
| |
− | | |
− | ==Solution==
| |
− | | |
− | Denote by <math>I_k</math> the interval <math>\left( k - 1 , k \right)</math> for <math>k \in \left\{ 2, 3, \cdots , 10 \right\}</math> and <math>I_1</math> the interval <math>\left( - \infty, 1 \right)</math>.
| |
− | | |
− | Therefore, the number of intervals that <math>P(x)</math> is positive is
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | 1 + \sum_{i=1}^{10} \Bbb I \left\{
| |
− | \sum_{j=i}^{10} j \mbox{ is even}
| |
− | \right\}
| |
− | & = 1 + \sum_{i=1}^{10} \Bbb I \left\{
| |
− | \frac{\left( i + 10 \right) \left( 11 - i \right)}{2} \mbox{ is even}
| |
− | \right\} \\
| |
− | & = 1 + \sum_{i=1}^{10} \Bbb I \left\{
| |
− | \frac{- i^2 + i + 110}{2} \mbox{ is even}
| |
− | \right\} \\
| |
− | & = 1 + \sum_{i=1}^{10} \Bbb I \left\{
| |
− | \frac{i^2 - i}{2} \mbox{ is odd}
| |
− | \right\} \\
| |
− | & = \boxed{\textbf{(C) 6}} .
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
| |