Difference between revisions of "2021 AIME I Problems/Problem 6"

m (Solution 3)
m
 
Line 63: Line 63:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
==Video Solution by Punxsutawney Phil==
 
https://youtube.com/watch?v=vaRfI0l4s_8
 
  
 
==See Also==
 
==See Also==

Latest revision as of 23:50, 11 January 2024

Problem

Segments $\overline{AB}, \overline{AC},$ and $\overline{AD}$ are edges of a cube and $\overline{AG}$ is a diagonal through the center of the cube. Point $P$ satisfies $BP=60\sqrt{10}$, $CP=60\sqrt{5}$, $DP=120\sqrt{2}$, and $GP=36\sqrt{7}$. Find $AP.$

Solution 1

First scale down the whole cube by $12$. Let point $P$ have coordinates $(x, y, z)$, point $A$ have coordinates $(0, 0, 0)$, and $s$ be the side length. Then we have the equations \begin{align*} (s-x)^2+y^2+z^2&=\left(5\sqrt{10}\right)^2, \\ x^2+(s-y)^2+z^2&=\left(5\sqrt{5}\right)^2, \\ x^2+y^2+(s-z)^2&=\left(10\sqrt{2}\right)^2, \\ (s-x)^2+(s-y)^2+(s-z)^2&=\left(3\sqrt{7}\right)^2. \end{align*} These simplify into \begin{align*} s^2+x^2+y^2+z^2-2sx&=250, \\ s^2+x^2+y^2+z^2-2sy&=125, \\ s^2+x^2+y^2+z^2-2sz&=200, \\ 3s^2-2s(x+y+z)+x^2+y^2+z^2&=63. \end{align*} Adding the first three equations together, we get $3s^2-2s(x+y+z)+3(x^2+y^2+z^2)=575$. Subtracting this from the fourth equation, we get $2(x^2+y^2+z^2)=512$, so $x^2+y^2+z^2=256$. This means $PA=16$. However, we scaled down everything by $12$ so our answer is $16*12=\boxed{192}$.

~JHawk0224

Solution 2 (Solution 1 with Slight Simplification)

Once the equations for the distance between point P and the vertices of the cube have been written, we can add the first, second, and third to receive, \[2(x^2 + y^2 + z^2) + (s-x)^2 + (s-y)^2 + (s-z)^2 = 250 + 125 + 200.\] Subtracting the fourth equation gives \begin{align*} 2(x^2 + y^2 + z^2) &= 575 - 63 \\ x^2 + y^2 + z^2 &= 256 \\ \sqrt{x^2 + y^2 + z^2} &= 16. \end{align*} Since point $A = (0,0,0), PA = 16$, and since we scaled the answer is $16 \cdot 12 = \boxed{192}$.

~Aaryabhatta1

Solution 3

Let $E$ be the vertex of the cube such that $ABED$ is a square. Using the British Flag Theorem, we can easily show that \[PA^2 + PE^2 = PB^2 + PD^2\] and \[PA^2 + PG^2 = PC^2 + PE^2\] Hence, by adding the two equations together, we get $2PA^2 + PG^2 = PB^2 + PC^2 + PD^2$. Substituting in the values we know, we get $2PA^2 + 7\cdot 36^2 =10\cdot60^2 + 5\cdot 60^2 + 2\cdot 120^2$.

Thus, we can solve for $PA$, which ends up being $\boxed{192}$.

(Lokman GÖKÇE) size:100px

Solution 4

For all points $X$ in space, define the function $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ by $f(X)=PX^{2}-GX^{2}$. Then $f$ is linear; let $O=\frac{2A+G}{3}$ be the center of $\triangle BCD$. Then since $f$ is linear, \begin{align*} 3f(O)=f(B)+f(C)+f(D)&=2f(A)+f(G) \\  \left(PB^{2}-GB^{2}\right)+\left(PC^{2}-GC^{2}\right)+\left(PD^{2}-GD^{2}\right)&=2\left(PA^{2}-GA^{2}\right)+PG^{2} \\ \left(60\sqrt{10}\right)^{2}-2x^{2}+\left(60\sqrt{5}\right)^{2}-2x^{2}+\left(120\sqrt{2}\right)^{2}-2x^{2}&=2PA^{2}-2\cdot 3x^{2}+\left(36\sqrt{7}\right)^{2}, \end{align*} where $x$ denotes the side length of the cube. Thus \begin{align*}  36\text{,}000+18\text{,}000+28\text{,}800-6x^{2}&=2PA^{2}-6x^{2}+9072 \\  82\text{,}800-6x^{2}&=2PA^{2}-6x^{2}+9072 \\  73\text{,}728&=2PA^{2} \\  36\text{,}864&=PA^{2} \\  PA&=\boxed{192}. \end{align*}


See Also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png