Difference between revisions of "2022 SSMO Team Round Problems/Problem 3"
(Created page with "==Problem== Let <math>ABCD</math> be an isosceles trapezoid such that <math>AB\parallel CD.</math> Let <math>E</math> be a point on <math>CD</math> such that <math>AB=CE.</mat...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>ABCD</math> be an isosceles trapezoid such that <math>AB\parallel CD.</math> Let <math>E</math> be a point on <math>CD</math> such that <math>AB=CE.</math> Let the midpoint of <math>DE</math> be <math>M</math> such that <math>BD</math> intersects <math>AM</math> at <math>G</math> and <math>AE</math> at <math>F.</math> If <math>DC=36, AB=24,</math> and <math>AD=10,</math> then <math>[AGF]</math> can be expressed as <math>\frac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math> | Let <math>ABCD</math> be an isosceles trapezoid such that <math>AB\parallel CD.</math> Let <math>E</math> be a point on <math>CD</math> such that <math>AB=CE.</math> Let the midpoint of <math>DE</math> be <math>M</math> such that <math>BD</math> intersects <math>AM</math> at <math>G</math> and <math>AE</math> at <math>F.</math> If <math>DC=36, AB=24,</math> and <math>AD=10,</math> then <math>[AGF]</math> can be expressed as <math>\frac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math> | ||
− | + | <center> | |
− | + | <asy> | |
+ | unitsize(2mm); | ||
+ | fill((6,8/5)--(10,8/3)--(6,8)--cycle,lightgray); | ||
+ | draw((0,0)--(36,0)--(30,8)--(6,8)--cycle); | ||
+ | draw((6,8)--(12,0)--(0,0)); | ||
+ | draw((0,0)--(30,8)); | ||
+ | draw((6,8)--(6,0)); | ||
+ | label("A", (6,8), NW); | ||
+ | dot((6,8)); | ||
+ | label("B", (30,8), NE); | ||
+ | dot((30,8)); | ||
+ | label("C", (36,0), SE); | ||
+ | dot((36,0)); | ||
+ | label("D", (0,0), SW); | ||
+ | dot((0,0)); | ||
+ | label("E",(12,0),S); | ||
+ | dot((12,0)); | ||
+ | label("M",(6,0),S); | ||
+ | dot((6,0)); | ||
+ | dot((6,8/5)); | ||
+ | dot((10,8/3)); | ||
+ | </asy> | ||
+ | </center> | ||
==Solution== | ==Solution== |
Latest revision as of 12:08, 14 December 2023
Problem
Let be an isosceles trapezoid such that Let be a point on such that Let the midpoint of be such that intersects at and at If and then can be expressed as where and are relatively prime positive integers. Find