Difference between revisions of "2022 SSMO Team Round Problems/Problem 5"
(Created page with "==Problem== Consider the following rectangle <math>ABCD</math> where <math>BC=8.</math> If<cmath>CD=CT_2, 4T_2P_2=2DP_1=AC, [ADP_1C]=33, \text{ and }[ABP_2C]=34,</cmath>find t...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Consider the following rectangle <math>ABCD</math> where <math>BC=8.</math> If<cmath>CD=CT_2, 4T_2P_2=2DP_1=AC, [ADP_1C]=33, \text{ and }[ABP_2C]=34,</cmath>find the value of <math>[P_1CP_2A].</math> (Note that <math>[ABC]</math> is the area of <math>ABC</math>.) | + | Consider the following rectangle <math>ABCD</math> where <math>BC=8.</math> If <cmath>CD=CT_2, 4T_2P_2=2DP_1=AC, [ADP_1C]=33, \text{ and }[ABP_2C]=34,</cmath> find the value of <math>[P_1CP_2A].</math> (Note that <math>[ABC]</math> is the area of <math>ABC</math>.) |
− | + | <center> | |
− | + | <asy> | |
+ | unitsize(0.25cm); | ||
+ | dot((0,0)); | ||
+ | dot((12,0)); | ||
+ | dot((12,16)); | ||
+ | dot((0,16)); | ||
+ | draw((0,0)--(12,0)--(12,16)--(0,16)--(0,0)--cycle); | ||
+ | dot((8,22)); | ||
+ | dot((17,4)); | ||
+ | dot((8,16)); | ||
+ | dot((12,4)); | ||
+ | label("$A$", (0,0), SW); | ||
+ | label("$B$", (12,0), SE); | ||
+ | label("$C$", (12,16), NE); | ||
+ | label("$D$", (0,16), NW); | ||
+ | label("$P_1$", (8,22), NE); | ||
+ | label("$P_2$", (17,4), SE); | ||
+ | label("$T_1$", (8,16), SE); | ||
+ | label("$T_2$", (12,4), SW); | ||
+ | draw((8,22)--(8,16),dashed+linewidth(.5)); | ||
+ | draw((12,4)--(17,4),dashed+linewidth(.5)); | ||
+ | </asy> | ||
+ | </center> | ||
==Solution== | ==Solution== |
Latest revision as of 12:09, 14 December 2023
Problem
Consider the following rectangle where If find the value of (Note that is the area of .)