Difference between revisions of "1992 OIM Problems/Problem 3"
(→See also) |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 19: | Line 19: | ||
Point <math>P</math> coordinates is <math>(P_x,P_y)</math> and <math>P_x^2+P_y^2=r^2=\left( \frac{1}{\sqrt{3}} \right)^2=\frac{1}{3}</math> | Point <math>P</math> coordinates is <math>(P_x,P_y)</math> and <math>P_x^2+P_y^2=r^2=\left( \frac{1}{\sqrt{3}} \right)^2=\frac{1}{3}</math> | ||
− | Let <math>a, b, c</math> be the distances from the vertices to point <math>P</math> | + | Let <math>a, b, c</math> be the distances from the vertices to point <math>P</math>. |
Part a. | Part a. | ||
Line 29: | Line 29: | ||
<math>a^2=-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}</math> | <math>a^2=-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}</math> | ||
− | + | <math>b^2=(P_x-1)^2+\left( P_y+\frac{1}{\sqrt{3})} \right)^2=P_x^2+P_y^2+2P_x+\frac{2}{\sqrt{3}}P_y+\frac{4}{3}</math> | |
− | {{ | + | <math>b^2=2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}</math> |
+ | |||
+ | <math>c^2=P_x^2+\left( P_y-\frac{2}{\sqrt{3}} \right)^2=P_x^2+P_y^2-\frac{4}{\sqrt{3}}P_y+\frac{4}{3}</math> | ||
+ | |||
+ | <math>c^2=-\frac{4}{\sqrt{3}}P_y+\frac{5}{3}</math> | ||
+ | |||
+ | <math>a^2+b^2+c^2=-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}+2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}-\frac{4}{\sqrt{3}}P_y+\frac{5}{3}</math> | ||
+ | |||
+ | <math>P_x</math> and <math>P_y</math> cancels in the above equation. So, | ||
+ | |||
+ | <math>a^2+b^2+c^2=\frac{15}{3}=5</math> Proving proves part a. | ||
+ | |||
+ | Part b. | ||
+ | |||
+ | Using Heron's formula: | ||
+ | |||
+ | <math>A=\sqrt{\left( \frac{a+b+c}{2} \right)\left( \frac{a+b+c}{2} -a\right)\left( \frac{a+b+c}{2} -b\right)\left( \frac{a+b+c}{2} -c\right)}</math> | ||
+ | |||
+ | <math>4A=\sqrt{\left( a+b+c \right)\left( a+b-c \right)\left( a-b+c \right)\left( -a+b+c \right)}</math> | ||
+ | |||
+ | <math>4A=\sqrt{\left( \left( a+b \right)^2-c^2 \right)\left(c^2- \left( a-b \right)^2 \right)}</math> | ||
+ | |||
+ | <math>4A=\sqrt{\left( \left( a^2+b^2+c^2 \right)-2c^2+2ab \right)\left( 2c^2-\left( a^2+b^2+c^2 \right)+2ab \right)}</math> | ||
+ | |||
+ | Substitute what we proved in part a we get: | ||
+ | |||
+ | <math>4A=\sqrt{\left( 5-2c^2+2ab \right)\left( 2c^2-5+2ab \right)}</math> | ||
+ | |||
+ | <math>4A=\sqrt{4a^2b^2-\left( 2c^2-5 \right)^2}=\sqrt{4\left( a^2b^2-c^4+5c^2 \right)-25}</math> | ||
+ | |||
+ | Now let's find <math>a^2b^2</math> and <math>c^4</math> separately. | ||
+ | |||
+ | <math>a^2b^2=\left( \frac{2}{\sqrt{3}}P_y+\frac{5}{3}-2P_x \right)\left( \frac{2}{\sqrt{3}}P_y+\frac{5}{3}+2P_x \right)=\left( \frac{2}{\sqrt{3}}P_y+\frac{5}{3}\right)^2-4P_x^2</math> | ||
+ | |||
+ | <math>a^2b^2= \frac{4}{3}P_y^2+\frac{20}{3\sqrt{3}}P_y-4P_x^2+\frac{25}{9}</math> | ||
+ | |||
+ | Now let's find <math>-c^4</math> | ||
+ | |||
+ | <math>c^4=\left(-\frac{4}{\sqrt{3}}P_y+\frac{5}{3}\right)^2=\frac{16}{3}P_y^2-\frac{40}{3\sqrt{3}}P_y+\frac{25}{9}</math> | ||
+ | |||
+ | <math>-c^4=-\frac{16}{3}P_y^2+\frac{40}{3\sqrt{3}}P_y-\frac{25}{9}</math> | ||
+ | |||
+ | Now we find <math>5c^2</math>: | ||
+ | |||
+ | <math>5c^2=-\frac{20}{\sqrt{3}}P_y+\frac{25}{3}</math> | ||
+ | |||
+ | Now we find <math>a^2b^2-c^4+5c^2</math> | ||
+ | |||
+ | <math>a^2b^2-c^4+5c^2=\frac{4}{3}P_y^2+\frac{20}{3\sqrt{3}}P_y-4P_x^2+\frac{25}{9}-\frac{16}{3}P_y^2+\frac{40}{3\sqrt{3}}P_y-\frac{25}{9}-\frac{20}{\sqrt{3}}P_y+\frac{25}{3}</math> | ||
+ | |||
+ | The <math>P_y</math> terms cancel and we get: | ||
+ | |||
+ | <math>a^2b^2-c^4+5c^2=-4P_y^2-4P_x^2+\frac{25}{3}</math> | ||
+ | |||
+ | Since <math>P_x^2+P_y^2=\frac{1}{3}</math>, | ||
+ | |||
+ | <math>a^2b^2-c^4+5c^2=-\frac{4}{3}+\frac{25}{3}=7</math> | ||
+ | |||
+ | We substitute <math>a^2b^2-c^4+5c^2=7</math> into the equation for <math>4A</math> to get: | ||
+ | |||
+ | <math>4A=\sqrt{4\left(7 \right)-25}=\sqrt{28-25}=\sqrt{3}</math> | ||
+ | |||
+ | Therefore, <math>A=\frac{\sqrt{3}}{4}</math> | ||
+ | |||
+ | And since we use Heron's formula, if the triangle was not possible it would have given us imaginary numbers. Therefore it is now proven that it is possible to construct that triangle and the area is <math>\frac{\sqrt{3}}{4}</math> | ||
+ | |||
+ | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
+ | * Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got full points for part a but partial points for part b. because I messed up the algebra on the Heron's formula and couldn't finish the proof. So, I think I got 6 or 7 points out of 10. | ||
+ | |||
+ | {{alternate solutions}} | ||
== See also == | == See also == | ||
+ | [[OIM Problems and Solutions]] | ||
+ | |||
https://www.oma.org.ar/enunciados/ibe7.htm | https://www.oma.org.ar/enunciados/ibe7.htm |
Latest revision as of 08:42, 23 December 2023
Problem
In an equilateral triangle whose side has length 2, the circle is inscribed.
a. Show that for every point of , the sum of the squares of its distances to the vertices , and is 5.
b. Show that for every point in it is possible to construct a triangle whose sides have the lengths of the segments , and , and that its area is:
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Construct the triangle in the cartesian plane as shown above with the shown vertices coordinates.
Point coordinates is and
Let be the distances from the vertices to point .
Part a.
Since ,
and cancels in the above equation. So,
Proving proves part a.
Part b.
Using Heron's formula:
Substitute what we proved in part a we get:
Now let's find and separately.
Now let's find
Now we find :
Now we find
The terms cancel and we get:
Since ,
We substitute into the equation for to get:
Therefore,
And since we use Heron's formula, if the triangle was not possible it would have given us imaginary numbers. Therefore it is now proven that it is possible to construct that triangle and the area is
~Tomas Diaz. orders@tomasdiaz.com
- Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got full points for part a but partial points for part b. because I messed up the algebra on the Heron's formula and couldn't finish the proof. So, I think I got 6 or 7 points out of 10.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.