Difference between revisions of "2023 SSMO Tiebreaker Round Problems/Problem 2"

(Created page with "==Problem== Let <math>P(x) = x^3 + 3ax^2 + 3bx + (a+b)</math> be a real polynomial with nonnegative and nonzero real roots <math>p, q, r</math>. Suppose that <cmath>(p + 1)^3...")
 
(Problem)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Let <math>P(x) = x^3 + 3ax^2 + 3bx + (a+b)</math> be a real polynomial with
 
Let <math>P(x) = x^3 + 3ax^2 + 3bx + (a+b)</math> be a real polynomial with
nonnegative and nonzero real roots <math>p, q, r</math>. Suppose that <cmath>(p + 1)^3 + (q + 1)^3 + (r+1)^3 + 3P(-1) = 0.</cmath> If <math>P(1) = a_1+b_1\sqrt{c_1},</math> for squarefree <math>c_1,</math> find <math>a_1+b_1+c_1</math>.
+
nonnegative and nonzero real roots <math>\alpha, \beta, \gamma</math>. Suppose that <cmath>(\alpha + 1)^3 + (\beta + 1)^3 + (\gamma+1)^3 + 3P(-1) = 0.</cmath> If <math>P(1) = a_1+b_1\sqrt{c_1},</math> for squarefree <math>c_1,</math> find <math>a_1+b_1+c_1</math>.
  
 
==Solution==
 
==Solution==

Latest revision as of 01:21, 31 December 2023

Problem

Let $P(x) = x^3 + 3ax^2 + 3bx + (a+b)$ be a real polynomial with nonnegative and nonzero real roots $\alpha, \beta, \gamma$. Suppose that \[(\alpha + 1)^3 + (\beta + 1)^3 + (\gamma+1)^3 + 3P(-1) = 0.\] If $P(1) = a_1+b_1\sqrt{c_1},$ for squarefree $c_1,$ find $a_1+b_1+c_1$.

Solution