Difference between revisions of "PaperMath’s sum"
(→Notes) |
Kempu33334 (talk | contribs) (→PaperMath’s sum) |
||
(58 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | ==PaperMath’s sum== | + | == PaperMath’s sum== |
+ | Papermath’s sum states, | ||
− | + | <math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math> | |
− | |||
− | <math>\sum_{i=0}^{2n} {( | ||
Or | Or | ||
− | <math>x^2\sum_{i=0}^{2n} {10^i}=( | + | <math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math> |
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | ||
− | <math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}</math> | + | <math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math> |
==Proof== | ==Proof== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <math> | + | First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition, |
− | + | Observing that | |
+ | <math>\sum_{i=0}^{n-1} {10^i} = | ||
+ | (10^{n}-1)/9</math> | ||
+ | and | ||
+ | <math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math> | ||
+ | concludes the proof. | ||
− | + | ==Problems== | |
− | + | AMC 12A Problem 25 | |
− | |||
− | + | For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | |
− | + | <math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | |
− | |||
− | <math>\ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Notes== | ==Notes== | ||
− | + | Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used. | |
− | |||
==See also== | ==See also== | ||
Line 69: | Line 39: | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
− | [[Category: | + | [[Category:Theorems]] |
Latest revision as of 17:07, 13 October 2024
Contents
PaperMath’s sum
Papermath’s sum states,
Or
For all real values of , this equation holds true for all nonnegative values of . When , this reduces to
Proof
First, note that the part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that and concludes the proof.
Problems
AMC 12A Problem 25
For a positive integer and nonzero digits , , and , let be the -digit integer each of whose digits is equal to ; let be the -digit integer each of whose digits is equal to , and let be the -digit (not -digit) integer each of whose digits is equal to . What is the greatest possible value of for which there are at least two values of such that ?
Notes
Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used.