Difference between revisions of "PaperMath’s sum"
(Tag: Undo) |
Kempu33334 (talk | contribs) (→PaperMath’s sum) |
||
(44 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | == | + | == PaperMath’s sum== |
− | + | Papermath’s sum states, | |
− | == | + | <math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math> |
− | |||
− | + | Or | |
− | + | <math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math> | |
− | <math> | + | For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to |
− | + | <math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math> | |
− | + | ==Proof== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition, | |
− | + | Observing that | |
− | + | <math>\sum_{i=0}^{n-1} {10^i} = | |
− | <math>\sum_{i=0}^{ | + | (10^{n}-1)/9</math> |
− | + | and | |
− | + | <math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math> | |
− | + | concludes the proof. | |
− | <math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Problems== | ==Problems== | ||
− | + | AMC 12A Problem 25 | |
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | ||
Line 56: | Line 31: | ||
==Notes== | ==Notes== | ||
− | + | Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used. | |
− | |||
==See also== | ==See also== | ||
Line 65: | Line 39: | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
− | [[Category: | + | [[Category:Theorems]] |
Latest revision as of 17:07, 13 October 2024
Contents
PaperMath’s sum
Papermath’s sum states,
Or
For all real values of , this equation holds true for all nonnegative values of . When , this reduces to
Proof
First, note that the part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that and concludes the proof.
Problems
AMC 12A Problem 25
For a positive integer and nonzero digits , , and , let be the -digit integer each of whose digits is equal to ; let be the -digit integer each of whose digits is equal to , and let be the -digit (not -digit) integer each of whose digits is equal to . What is the greatest possible value of for which there are at least two values of such that ?
Notes
Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used.