Difference between revisions of "PaperMath’s sum"

(Proof)
(Notes)
 
(39 intermediate revisions by 6 users not shown)
Line 1: Line 1:
==Papermath’s sum==
+
== PaperMath’s sum==
This is a summation identities for decomposition or reconstruction of summations. PaperMath’s sum states,
+
Papermath’s sum states,
  
<math>\sum_{i=0}^{2n} {(x^2 \times 10^i)}=(\sum_{j=0}^n {(3x \times 10^j)})^2 + \sum_{k=0}^n {(2x^2 \times 10^k)}</math>
+
<math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math>
  
 
Or
 
Or
  
<math>x^2\sum_{i=0}^{2n} {10^i}=(x \sum_{j=0}^n {(3 \times 10^j)})^2 + x^2\sum_{k=0}^n {(2 \times 10^k)}</math>
+
<math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math>
  
 
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to
 
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to
  
<math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}</math>
+
<math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math>
  
 
==Proof==
 
==Proof==
We will first prove a easier variant of PaperMath’s sum,
 
  
<math>\sum_{i=0}^{2n} {(9 \times 10^i)}=(\sum_{j=0}^n {(9 \times 10^j)})^2 + 9\sum_{k=0}^n {(2 \times 10^k)}</math>
+
First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition,
  
This is the exact same as
+
Observing that
 
+
<math>\sum_{i=0}^{n-1} {10^i} =  
<math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}</math>
+
(10^{n}-1)/9</math>
 
+
and
But everything is multiplied by <math>9</math>.
+
<math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math>
 
+
concludes the proof.
Notice that this is the exact same as saying
 
 
 
<math>\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+9(\underbrace {22\dots}_{n})</math>
 
 
 
Notice that <math>9(\underbrace {22\dots}_{n})=2(\underbrace {99\dots}_{n})</math>
 
 
 
Substituting this into <math>\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+9(\underbrace {22\dots}_{n})</math> yields  <math>\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})</math>
 
 
 
Adding <math>1</math> on both sides yields
 
 
 
<math>10^{2n}= (\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})+1</math>
 
 
 
Notice that <math>(\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})+1=(\underbrace {99\dots}_{n}+1)^2=(10^n)^2=10^{2n}</math>
 
 
 
As you can see,
 
 
 
<math>\sum_{i=0}^{2n} {(9 \times 10^i)}=(\sum_{j=0}^n {(9 \times 10^j)})^2 + 9\sum_{k=0}^n {(2 \times 10^k)}</math>
 
 
 
Is true since the RHS and LHS are equal
 
 
 
This equation holds true for any values of <math>n</math>. Since this is true, we can divide by <math>9</math> on both sides to get
 
 
 
<math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}</math>
 
 
 
And then multiply both sides <math>x^2</math> to get
 
 
 
<math>\sum_{i=0}^{2n} {(x^2 \times 10^i)}=(\sum_{j=0}^n {(3x \times 10^j)})^2 + \sum_{k=0}^n {(2x^2 \times 10^k)}</math>
 
 
 
Or
 
 
 
<math>x^2\sum_{i=0}^{2n} {10^i}=(x \sum_{j=0}^n {(3 \times 10^j)})^2 + x^2\sum_{k=0}^n {(2 \times 10^k)}</math>
 
 
 
Which proves PaperMath’s sum
 
  
 
==Problems==
 
==Problems==
2018 AMC 12A Problem 25
+
AMC 12A Problem 25
  
 
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
 
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
Line 65: Line 31:
  
 
==Notes==
 
==Notes==
 
+
Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used due to its randomness.
AntandMonkeyDoctor‘s sum was discovered by the aops user AntandMonkeyDoctor, as the name implies. It was stolen from AntandMonkeyDoctor.
 
  
 
==See also==
 
==See also==
Line 74: Line 39:
  
 
[[Category:Algebra]]
 
[[Category:Algebra]]
[[Category:Definition]]
+
[[Category:Theorems]]

Latest revision as of 23:14, 9 November 2024

PaperMath’s sum

Papermath’s sum states,

$\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}$

Or

$x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}$

For all real values of $x$, this equation holds true for all nonnegative values of $n$. When $x=1$, this reduces to

$\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}$

Proof

First, note that the $x^2$ part is trivial multiplication, associativity, commutativity, and distributivity over addition,

Observing that $\sum_{i=0}^{n-1} {10^i} =  (10^{n}-1)/9$ and $(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9$ concludes the proof.

Problems

AMC 12A Problem 25

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

Notes

Papermath’s sum was named by the aops user Papermath, after noticing it in a solution to an AMC 12 problem. The name is not widely used due to its randomness.

See also