Difference between revisions of "1960 IMO Problems/Problem 2"
(6 intermediate revisions by 5 users not shown) | |||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
Set <math>x = -\frac{1}{2} + \frac{a^2}{2}</math>, where <math>a\ge0</math>. | Set <math>x = -\frac{1}{2} + \frac{a^2}{2}</math>, where <math>a\ge0</math>. | ||
− | <math>\frac{4(-\frac{1}{2}+\frac{a^2}{2})^2}{(1-\sqrt{1+2(-\frac{1}{2}+\frac{a^2}{2})})^2}< | + | <math>\frac{4\left(-\frac{1}{2}+\frac{a^2}{2}\right)^2}{\left(1-\sqrt{1+2\left(-\frac{1}{2}+\frac{a^2}{2}\right)}\right)^2}<2\left(-\frac{1}{2}+\frac{a^2}{2}\right)+9</math> |
After simplifying, we get | After simplifying, we get | ||
Line 14: | Line 14: | ||
<math>a^2+2a+1<a^2+8</math> | <math>a^2+2a+1<a^2+8</math> | ||
− | Which gives <math>a<\frac{7}{2}</math> and hence <math>x<\frac{45}{8}</math>. | + | Which gives <math>a<\frac{7}{2}</math> and hence <math>-\frac{1}{2} \le x<\frac{45}{8}</math>. |
− | But <math>x=0</math> makes the | + | But <math>x=0</math> makes the LHS indeterminate. |
− | So, answer: <math>x<\frac{45}{8}</math>, except <math>x=0</math>. | + | So, answer: <math>-\frac{1}{2} \le x<\frac{45}{8}</math>, except <math>x=0</math>. |
+ | ==Solution 2== | ||
+ | |||
+ | If <math>x \neq 0</math>, then the LHS is defined and rewrites as follows: | ||
+ | |||
+ | \begin{align*} | ||
+ | \frac{4x^2}{(1 - \sqrt{2x + 1})^2} &= \biggl(\frac{2x}{1 - \sqrt{2x + 1}}\biggl)^2 \\ | ||
+ | &= \biggl( \frac{2x}{1 - \sqrt{2x + 1}} \cdot \frac{1 + \sqrt{2x + 1}}{1 + \sqrt{2x + 1}} \biggl)^2 \\ | ||
+ | &= (1 + \sqrt{2x + 1})^2 \\ | ||
+ | &= 2x + 2\sqrt{2x + 1} + 2. | ||
+ | \end{align*} | ||
+ | |||
+ | The inequality therefore holds if and only if | ||
+ | <cmath>2x + 2\sqrt{2x + 1} + 2 < 2x + 9.</cmath> | ||
+ | or | ||
+ | <cmath>\sqrt{2x + 1} < \frac{7}{2}.</cmath> | ||
+ | |||
+ | So <math>2x + 1 < 49/4</math> and therefore <math>x < 45/8</math>. But if <math>x < -1/2</math> then the inequality makes no sense, since <math>\sqrt{2x + 1}</math> is imaginary. So the original inequality holds iff <math>x</math> is in <math>[-1/2, 0) \cup (0, 45/8).</math> | ||
==See Also== | ==See Also== | ||
Line 25: | Line 42: | ||
{{IMO box|year=1960|num-b=1|num-a=3}} | {{IMO box|year=1960|num-b=1|num-a=3}} | ||
+ | [[Category:Olympiad Algebra Problems]] | ||
[[Category:Olympiad Inequality Problems]] | [[Category:Olympiad Inequality Problems]] |
Latest revision as of 04:51, 7 April 2024
Contents
Problem
For what values of the variable does the following inequality hold:
Solution
Set , where .
After simplifying, we get
So
Which gives and hence .
But makes the LHS indeterminate.
So, answer: , except .
Solution 2
If , then the LHS is defined and rewrites as follows:
\begin{align*} \frac{4x^2}{(1 - \sqrt{2x + 1})^2} &= \biggl(\frac{2x}{1 - \sqrt{2x + 1}}\biggl)^2 \\ &= \biggl( \frac{2x}{1 - \sqrt{2x + 1}} \cdot \frac{1 + \sqrt{2x + 1}}{1 + \sqrt{2x + 1}} \biggl)^2 \\ &= (1 + \sqrt{2x + 1})^2 \\ &= 2x + 2\sqrt{2x + 1} + 2. \end{align*}
The inequality therefore holds if and only if or
So and therefore . But if then the inequality makes no sense, since is imaginary. So the original inequality holds iff is in
See Also
1960 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |