|
|
(2 intermediate revisions by the same user not shown) |
Line 3: |
Line 3: |
| <cmath>x^{4}=(x-1)(y^{3}-23)-1</cmath> | | <cmath>x^{4}=(x-1)(y^{3}-23)-1</cmath> |
| | | |
− | Find the maximum possible value of <math>x + y</math>. | + | Find the maximum possible value of <math>x + y</math> |
− | ==Solution1(Diophantine)==
| |
− | <math>x^{4}=(x-1)(y^{3}-23)-1</math>, subtracting 1 on both sides we get <math>x^{4}- 1^{4}=(x-1)(y^{3}-23)-2</math>. [[Factorizing]] the LHS we get
| |
− | | |
− | <math>(x^{2}+ 1)(x-1)(x+1) =(x-1)(y^{3}-23)-2</math>. Now [[divide]] the [[equation]] by <math>x-1</math> (considering that <math>x\neq 1</math>) to get <cmath>(x^{2}+ 1)(x+1) = (y^{3}-23)-\frac{2}{x-1}</cmath> Since <math>x</math> and <math>y</math> are [[integers]], this implies <math>x-1</math> [[divides]] 2, so possible values <math>x-1</math> are -1, -2, 1, 2
| |
− | | |
− | This means <math>x=0</math>, <math>-1</math> (rejected as <math>x</math> is a [[positive integer]]), <math>2</math>, <math>3</math>. Thus, <math>x=2</math> or <math>3</math>. Now checking for each value, we find that when <math>x=2</math>, there is no [[integral]] value of <math>y</math>. When <math>x=3</math>, <math>y</math> evaluates to <math>4</math> which is the only possible positive [[integral]] solution.
| |
− | | |
− | So, <math>x+y=3+4=\boxed{7}</math>
| |
− | | |
− | ~SANSGANKRSNGUPTA(inspired by PJ AND AM sir)
| |
Latest revision as of 23:30, 31 August 2024