Difference between revisions of "2017 AMC 12B Problems/Problem 23"
The 76923th (talk | contribs) m (→Solution 1) |
(→Solution 4 (Mindless Vieta's Theorem)) |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 22: | Line 22: | ||
==Solution 2== | ==Solution 2== | ||
− | + | No need to find the equations for the lines, really. First of all, <math>f(x) = a(x-2)(x-3)(x-4) +x^2</math>. Let's say the line <math>AB</math> is <math>y=bx+c</math>, and <math>x_1</math> is the <math>x</math> coordinate of the third intersection, then <math>2</math>, <math>3</math>, and <math>x_1</math> are the three roots of <math>f(x) - bx-c</math>. The values of <math>b</math> and <math>c</math> have no effect on the sum of the 3 roots, because the coefficient of the <math>x^2</math> term is always <math>-9a+1</math>. So we have | |
<cmath> \frac{9a-1}{a} = 2 + 3 + x_1= 3 + 4 + x_2 = 2 + 4 + x_3</cmath> | <cmath> \frac{9a-1}{a} = 2 + 3 + x_1= 3 + 4 + x_2 = 2 + 4 + x_3</cmath> | ||
Adding all three equations up, we get | Adding all three equations up, we get | ||
Line 32: | Line 32: | ||
Cleaned up by SSding | Cleaned up by SSding | ||
+ | |||
+ | ==Solution 3== | ||
+ | Map every point <math>(x,y)</math> to <math>(x, y - x^2)</math>. Note that the x-coordinates do not change. Under this map, <math>A</math> goes to <math>(2,0)</math>, <math>B</math> goes to <math>(3, 0)</math> and <math>C</math> goes to <math>(4,0)</math>. The cubic through <math>A</math>, <math>B</math>, and <math>C</math> remains a cubic, while the lines between two points turn into quadratics. Finally, note that the intersection points of the lines and the cubic have the same x-coordinates as the intersection points of the quadratics and the cubic after applying the mapping. The cubic under this new coordinate plane has equation <math>k(x-2)(x-3)(x-4)</math>. The quadratic through <math>A</math> and <math>B</math> is <math>c(x-2)(x-3)</math>. Note that <math>c(x-2)(x-3) + x^2</math> must be a line, so <math>c = -1</math> to cancel out the squared terms. The intersection of the quadratic and cubic is solved by | ||
+ | <cmath>-(x-2)(x-3) = k(x-2)(x-3)(x-4) \implies x = 4 - \frac{1}{k}</cmath> | ||
+ | Similarly, the other x-coordinates are <math>3 - \frac{1}{k}</math> and <math>2 - \frac{1}{k}</math>. Summing, we have | ||
+ | <cmath>9 - \frac{3}{k} = 24 \implies k = -\frac{1}{5}</cmath> | ||
+ | We have <math>f(x) = -\frac{1}{5} (x-2)(x-3)(x-4) + x^2</math> so <math>f(0) = 2 \cdot 3 \cdot 4 / 5 = \boxed{\textbf{(D)}\frac{24}{5}}</math>. | ||
+ | |||
+ | If the mapping is too complicated, this solution is equivalent to realizing that the line <math>AB</math> has the equation <math>y = x^2 - (x-2)(x-3)</math> and solving for the intersection points. | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Crazyvideogamez CrazyVideoGamez] | ||
+ | |||
+ | ==Solution 4 (Mindless Vieta's Theorem)== | ||
+ | |||
+ | Since <math>f(x)</math> is a third degree polynomial, let <math>f(x)=ax^3+bx^2+cx+d</math>. We want to solve for <math>d</math>. | ||
+ | |||
+ | Notice that the 3 solutions to <math>f(x)=x^2</math> are <math>2, 3, 4</math>. Hence the polynomial <math>ax^3+(b-1)x^2+cx+d</math> has roots 2, 3, 4. By Vieta's theorem we get <math>-\frac{d}{a}=24</math>. It's not hard to get that <math>AB</math>, <math>AC</math>, and <math>BC</math> are given by the equations <math>y = 5x - 6</math>, <math>y= 6x-8</math>, and <math>y=7x-12</math> respectively. The 3 solutions to <math>f(x)=5x-6</math> are <math>2, 3, x_D</math>. Like before, using Vieta's theorem we get <math>-\frac{d+6}{a}=6x_D</math>. Similarly we get <math>-\frac{d+8}{a}=8x_E</math> and <math>-\frac{d+12}{a}=12x_F</math>. | ||
+ | |||
+ | At this point we have 5 unknowns: <math>a, d, x_D, x_E, x_F</math>, and 5 equations: | ||
+ | \begin{align} | ||
+ | & -\frac{d}{a}=24\ | ||
+ | \ | ||
+ | & -\frac{d+6}{a}=6x_D\ | ||
+ | \ | ||
+ | & -\frac{d+8}{a}=8x_E\ | ||
+ | \ | ||
+ | &-\frac{d+12}{a}=12x_F\ | ||
+ | \ | ||
+ | &x_D+x_E+x_F=24 | ||
+ | \end{align} | ||
+ | |||
+ | The specific structure of this system of equations allows it to be solved with relatively ease. Solving, we get <math>d=\frac{24}{5}</math> | ||
+ | |||
+ | ~tsun26 | ||
==See Also== | ==See Also== |
Latest revision as of 09:10, 3 November 2024
Contents
[hide]Problem
The graph of , where
is a polynomial of degree
, contains points
,
, and
. Lines
,
, and
intersect the graph again at points
,
, and
, respectively, and the sum of the
-coordinates of
,
, and
is 24. What is
?
Solution 1
Note that has roots
, and
. Therefore, we may write
. Now we find that lines
,
, and
are defined by the equations
,
, and
respectively.
Since we want to find the -coordinates of the intersections of these lines and
, we set each of them to
and synthetically divide by the solutions we already know exist.
In the case of line , we may write
for some real number
. Dividing both sides by
gives
or
.
For line , we have
for some real number
, which gives
or
.
For line , we have
for some real number
, which gives
or
.
Since , we have
or
. Solving for
gives
.
Substituting this back into the original equation, we get , and
Solution by vedadehhc
Solution 2
No need to find the equations for the lines, really. First of all, . Let's say the line
is
, and
is the
coordinate of the third intersection, then
,
, and
are the three roots of
. The values of
and
have no effect on the sum of the 3 roots, because the coefficient of the
term is always
. So we have
Adding all three equations up, we get
Solving this equation, we get
. We finish as Solution 1 does.
.
- Mathdummy
Cleaned up by SSding
Solution 3
Map every point to
. Note that the x-coordinates do not change. Under this map,
goes to
,
goes to
and
goes to
. The cubic through
,
, and
remains a cubic, while the lines between two points turn into quadratics. Finally, note that the intersection points of the lines and the cubic have the same x-coordinates as the intersection points of the quadratics and the cubic after applying the mapping. The cubic under this new coordinate plane has equation
. The quadratic through
and
is
. Note that
must be a line, so
to cancel out the squared terms. The intersection of the quadratic and cubic is solved by
Similarly, the other x-coordinates are
and
. Summing, we have
We have
so
.
If the mapping is too complicated, this solution is equivalent to realizing that the line has the equation
and solving for the intersection points.
Solution 4 (Mindless Vieta's Theorem)
Since is a third degree polynomial, let
. We want to solve for
.
Notice that the 3 solutions to are
. Hence the polynomial
has roots 2, 3, 4. By Vieta's theorem we get
. It's not hard to get that
,
, and
are given by the equations
,
, and
respectively. The 3 solutions to
are
. Like before, using Vieta's theorem we get
. Similarly we get
and
.
At this point we have 5 unknowns: , and 5 equations:
The specific structure of this system of equations allows it to be solved with relatively ease. Solving, we get
~tsun26
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.