Difference between revisions of "Tucker circles"
(Created page with "The Tucker circles are a generalization of the cosine circle and first Lemoine circle.") |
(→Tucker circle) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
The Tucker circles are a generalization of the cosine circle and first Lemoine circle. | The Tucker circles are a generalization of the cosine circle and first Lemoine circle. | ||
+ | ==Tucker circle== | ||
+ | [[File:Tucker circle.png|450px|right]] | ||
+ | [[File:Tucker circle A.png|450px|right]] | ||
+ | Let triangle <math>ABC</math> be given. <math>O</math> is it’s circumcenter, <math>L</math> is it’s Lemoine point. | ||
+ | |||
+ | Let homothety centered at <math>L</math> with factor <math>k</math> maps <math>\triangle ABC</math> into <math>\triangle DEF</math>. | ||
+ | |||
+ | Denote the crosspoints of sidelines these triangles as | ||
+ | <cmath>A' = BC \cap DF, B' = AC \cap DE, C' = AB \cap EF,</cmath> | ||
+ | <cmath> A'' = BC \cap DE, B'' = AC \cap EF, C'' = AB \cap DF.</cmath> | ||
+ | |||
+ | Prove that points <math>A', B', C', A'', B'',</math> and <math>C''</math> lies on the circle centered at <math>LO</math> (Tucker circle). | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <math>AB' || C''D, AC'' || B'D \implies AB'DC''</math> is the parallelogram. | ||
+ | |||
+ | Denote <math>K = AD \cap B'C'', AK = KD, B'K = KC'' \implies</math> | ||
+ | <math>B'C''</math> is antiparallel to <math>BC.</math> | ||
+ | |||
+ | Similarly, <math>A''C'</math> is antiparallel to <math>AC, A'B''</math> is antiparallel to <math>AB.</math> | ||
+ | |||
+ | <math>M = BE \cap A''C'</math> is midpoint <math>BE, N = A'B'' \cap CF</math> is the midpoint <math>CF.</math> | ||
+ | |||
+ | <math>\triangle AB'C'' \sim \triangle ABC.</math> | ||
+ | |||
+ | <math>\frac {LD}{AL} = k, AL = LD \implies \frac {AK}{AL} = \frac{2}{k+1}, \frac {KL}{AL} = \frac{1-k}{1+k}.</math> | ||
+ | |||
+ | Similarly, <math>\frac {BM}{BL} = \frac {CN}{CL} = \frac {AK}{AL} =\frac{2}{k+1}, \frac {KL}{AL} = \frac{ML}{BM}= \frac {NL}{CL} = \frac{1-k}{1+k}.</math> | ||
+ | |||
+ | Let <math>B'''C'''</math> be the symmedian <math>BC</math> through <math>L.</math> | ||
+ | <cmath>B'''C''' || B'C'' \implies B'C'' = B'''C''' \cdot \frac {AK}{AL} =\frac{2B'''C'''}{k+1}.</cmath> | ||
+ | |||
+ | It is known that three symmedians through <math>L</math> are equal, so <math>A''C' = C''B' = B''A' = \frac{2B'''C'''}{k+1}.</math> | ||
+ | |||
+ | <math>\triangle KMN</math> is homothetic to <math>\triangle ABC</math> with center <math>L</math> and factor <math>\frac{1-k}{1+k}.</math> | ||
+ | |||
+ | So segments <math>A''C' = C''B' = B''A'</math> are tangents to <math>\odot KMN</math> and points of contact are the midpoints of these segments. | ||
+ | |||
+ | Denote <math>Q</math> the circumcenter of <math>\triangle KMN, Q \in LO.</math> | ||
+ | |||
+ | Therefore <math>A'Q = B'Q = C'Q = A''Q = B''Q = C''Q. \blacksquare</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Tucker circle 2== | ||
+ | [[File:Tucker circle B.png|440px|right]] | ||
+ | Let triangle <math>ABC</math> be given. Let <math>D</math> be the arbitrary point on sideline <math>AC.</math> | ||
+ | |||
+ | Let <math>DD'</math> be the antiparallel to side <math>AB, D' \in BC.</math> | ||
+ | |||
+ | Denote point <math>E \in AB, D'E || AC.</math> | ||
+ | |||
+ | Let <math>EE'</math> be the antiparallel to side <math>BC, E' \in AC.</math> | ||
+ | |||
+ | Denote point <math>F \in BC, E'F || AB.</math> | ||
+ | |||
+ | Let <math>FF'</math> be the antiparallel to side <math>AC, F' \in AB.</math> | ||
+ | |||
+ | Prove that points <math>D, D', E, E', F,</math> and <math>F'</math> lies on the circle centered at <math>LO</math> (Tucker circle). | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <math>\angle ABC = \angle CDD' = \angle AE'E, DE' || DE' \implies DD'EE'</math> is isosceles trapezoid. | ||
+ | |||
+ | So <math>DD' = EE'.</math> | ||
+ | |||
+ | <math>\angle ACB = \angle BF'F = \angle AEE', FE' || EF' \implies EFE'F'</math> is isosceles trapezoid. | ||
+ | |||
+ | So <math>FF' = EE' = DD'. \angle BFF' = \angle CD'D \implies F'D || BC.</math> | ||
+ | |||
+ | Denote <math>A'</math> the midpoint <math>EE', B'</math> the midpoint <math>FF', C'</math> the midpoint <math>DD'.</math> | ||
+ | <math>AB || FE' \implies A'B' ||AB.</math> Similarly, <math>A'C' ||AC, C'B' ||CB.</math> | ||
+ | |||
+ | <math>A'</math> is the midpoint of antiparallel of <math>BC \implies AA'</math> is the <math>A-</math>symmedian of <math>\triangle ABC.</math> | ||
+ | |||
+ | Similarly, <math>BB'</math> is the <math>B-</math>symmedian, <math>CC'</math> is the <math>C-</math>symmedian of <math>\triangle ABC.</math> | ||
+ | |||
+ | Therefore Lemoine point <math>L = AA' \cap BB' \cap CC', \triangle A'B'C'</math> is homothetic to <math>\triangle ABC</math> with center <math>L.</math> | ||
+ | |||
+ | So segments <math>DD' = EE' = FF'</math> are tangents to <math>\odot A'B'C'</math> and points of contact are the midpoints of these segments. | ||
+ | |||
+ | Denote <math>Q</math> the circumcenter of <math>\triangle A'B'C', Q \in LO,</math> where <math>O</math> is the circumcenter of <math>\triangle ABC.</math> | ||
+ | |||
+ | Therefore <math>DQ = D'Q = EQ = E'Q = FQ = F'Q. \blacksquare</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Latest revision as of 05:34, 4 August 2024
The Tucker circles are a generalization of the cosine circle and first Lemoine circle.
Tucker circle
Let triangle be given. is it’s circumcenter, is it’s Lemoine point.
Let homothety centered at with factor maps into .
Denote the crosspoints of sidelines these triangles as
Prove that points and lies on the circle centered at (Tucker circle).
Proof
is the parallelogram.
Denote is antiparallel to
Similarly, is antiparallel to is antiparallel to
is midpoint is the midpoint
Similarly,
Let be the symmedian through
It is known that three symmedians through are equal, so
is homothetic to with center and factor
So segments are tangents to and points of contact are the midpoints of these segments.
Denote the circumcenter of
Therefore
vladimir.shelomovskii@gmail.com, vvsss
Tucker circle 2
Let triangle be given. Let be the arbitrary point on sideline
Let be the antiparallel to side
Denote point
Let be the antiparallel to side
Denote point
Let be the antiparallel to side
Prove that points and lies on the circle centered at (Tucker circle).
Proof
is isosceles trapezoid.
So
is isosceles trapezoid.
So
Denote the midpoint the midpoint the midpoint Similarly,
is the midpoint of antiparallel of is the symmedian of
Similarly, is the symmedian, is the symmedian of
Therefore Lemoine point is homothetic to with center
So segments are tangents to and points of contact are the midpoints of these segments.
Denote the circumcenter of where is the circumcenter of
Therefore
vladimir.shelomovskii@gmail.com, vvsss