Difference between revisions of "Clifford torus"

(Added Page, stub.)
 
m (Added a section)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A Clifford torus is a flat [[torus]].
+
The Clifford torus is a mathematical object that exists in higher dimensions, specifically in four-dimensional space (<math>R^4</math>). It can be understood as a special kind of surface or manifold that has interesting geometrical and topological properties.
 +
The Clifford torus is the subset of this space where each point on the torus lies on a unit circle in each of these two planes.
  
{{stub}}
+
 
 +
==Applications==
 +
 
 +
Clifford tori appear in the study of minimal surfaces, string theory, and in certain aspects of theoretical physics where higher-dimensional spaces are considered.

Latest revision as of 14:55, 18 September 2024

The Clifford torus is a mathematical object that exists in higher dimensions, specifically in four-dimensional space ($R^4$). It can be understood as a special kind of surface or manifold that has interesting geometrical and topological properties. The Clifford torus is the subset of this space where each point on the torus lies on a unit circle in each of these two planes.


Applications

Clifford tori appear in the study of minimal surfaces, string theory, and in certain aspects of theoretical physics where higher-dimensional spaces are considered.