Difference between revisions of "2002 AMC 12P Problems/Problem 25"

(Solution)
(Solution)
 
(9 intermediate revisions by 2 users not shown)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
Suppose we substitute <math>\frac{a+b}{2} = x</math> and <math>\frac{a-b}{2} = y</math>. Sum to product gives us
+
Sum to product gives us
  
<cmath>2\sin{x}\cos{y} = \frac{\sqrt{2}}{2}</cmath>
+
<cmath>2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}</cmath>
  
<cmath>2\cos{x}\cos{y} = \frac{\sqrt{6}}{2}.</cmath>
+
<cmath>2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}</cmath>
  
Dividing these equations tells us that <math>\tan{x} = \frac{1}{\sqrt{3}}</math>, so <math>x = \frac{\pi}{6} + \pi n</math> for an integer <math>n</math>. Note that <math>a+b = 2x</math>, so <math>\sin(a+b) = \sin{2x} = \sin \frac{\pi}{3} + 2\pi n = \frac{\sqrt{3}}{2}</math>, so our answer is <math>\boxed{(B)}</math>.
+
Dividing these equations tells us that <math>\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}</math>, so <math>\frac{a+b}{2} = \frac{\pi}{6} + \pi n</math> for an integer <math>n</math>, so <math>\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}</math>. The answer is <math>\boxed{(C)}</math>.
  
== Solution 2 (doesn't work but gives the right answer) ==
+
~alexanderruan
Given <math>\begin{cases}\sin{a} + \sin{b} = \frac{\sqrt{2}}{2} \dots \textcircled{1}\\
 
\cos {a} + \cos {b} = \frac{\sqrt{6}}{2} \dots \textcircled{2}\end{cases} </math>
 
We multiply both sides of the syetem, <math>\textcircled{1} \times \textcircled{2}</math>, then  we get <math> (\sin{a}\cos{a}  + \sin{b} \cos{b}  )+( \sin{a}\cos{b}  + \sin{b} \cos{a} )= \frac{\sqrt{3}}{2}</math>. i.e.
 
<math>(\sin{a}\cos{a}  + \sin{b} \cos{b}  )+\sin{(a+b)}= \frac{\sqrt{3}}{2}</math>.
 
 
 
We must get the sum of the first part of the equation, then we calculate <math>\textcircled{1}^2+\textcircled{2}^2 </math>, we will
 
get <math>\sin{a}\cos{a}  + \sin{b} \cos{b} = 0 </math> as <math> \sin^{2}{a}+\cos^{2}{a} = 1</math> and <math> \sin^{2}{b}+\cos^{2}{b} = 1</math>.
 
 
 
So <math>\sin{(a+b)} = \frac{\sqrt{3}}{2} \Longrightarrow \boxed{\textbf{(C) }\frac{\sqrt{3}}{2}}</math>
 
 
 
Comment: This problem is pretty much identical to [[2007 AMC 12A Problems/Problem 17|2007 AMC 12A Problem 17]] except with different numbers.
 
 
 
Note: This solution is wrong since equation 1 square plus equation 2 squared gives sin a sin b and cos a cos b.
 
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:02, 3 October 2024

Problem

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

Sum to product gives us

\[2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}\]

\[2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}\]

Dividing these equations tells us that $\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}$, so $\frac{a+b}{2} = \frac{\pi}{6} + \pi n$ for an integer $n$, so $\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}$. The answer is $\boxed{(C)}$.

~alexanderruan

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png