Difference between revisions of "1985 AJHSME Problems/Problem 1"

(Solution 3)
(Solution 3 (Brute Force))
 
(3 intermediate revisions by the same user not shown)
Line 18: Line 18:
  
 
(Note: This method is highly time consuming and should only be used as a last resort in math competitions)
 
(Note: This method is highly time consuming and should only be used as a last resort in math competitions)
 +
 +
<math>3 \times 5 \times 7 \times 9 \times 11 = 10395</math>
 +
 +
<math>9 \times 11 \times 3 \times 5 \times 7 = 10395</math>
 +
 +
Thus, the answer is 1, or <math>\boxed{\textbf{(A)}\ 1}</math>
 +
 +
~ lovelearning999
  
 
==Video Solution by BoundlessBrain!==
 
==Video Solution by BoundlessBrain!==

Latest revision as of 20:57, 2 October 2024

Problem

[katex]\dfrac{3\times 5}{9\times 11}\times \dfrac{7\times 9\times 11}{3\times 5\times 7}=[/katex]


[katex]\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)}\ \frac{1}{49} \qquad \text{(E)}\ 50[/katex]


Solution 1

By the associative property, we can rearrange the numbers in the numerator and the denominator. [katex display=true]\frac{3}{3}\cdot \frac{5}{5}\cdot\frac{7}{7}\cdot\frac{9}{9}\cdot\frac{11}{11}=1\cdot1\cdot1\cdot1\cdot1=\boxed{\text{(A)} 1}[/katex]

Solution 2

Notice that the $9 \times 11$ in the denominator of the first fraction cancels with the same term in the second fraction, the $7$s in the numerator and denominator of the second fraction cancel, and the $3 \times 5$ in the numerator of the first fraction cancels with the same term in the denominator second fraction. Then everything in the expression cancels, leaving us with $\boxed{\textbf{(A)}~1}$.

~cxsmi

Solution 3 (Brute Force)

(Note: This method is highly time consuming and should only be used as a last resort in math competitions)

$3 \times 5 \times 7 \times 9 \times 11 = 10395$

$9 \times 11 \times 3 \times 5 \times 7 = 10395$

Thus, the answer is 1, or $\boxed{\textbf{(A)}\ 1}$

~ lovelearning999

Video Solution by BoundlessBrain!

https://youtu.be/eC_Vu3vogHM

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png