Difference between revisions of "2005 Alabama ARML TST Problems/Problem 14"
(→See also) |
m (Root 2. Not 3.) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | <math>x^2-2y^2=1</math> means that <math>x</math> is odd. We can let <math>x=2x_1-1</math>: | + | ===Solution 1=== |
+ | <math>x^2-2y^2=1</math> means that <math>x</math> is odd. We can let <math>x=2x_1-1</math> for some <math>x_1>0</math>: | ||
<cmath>4x_1^2-4x_1-2y^2=0\Longrightarrow 2x_1^2-2x_1=y^2</cmath> | <cmath>4x_1^2-4x_1-2y^2=0\Longrightarrow 2x_1^2-2x_1=y^2</cmath> | ||
− | y is even, <math>y=2y_1</math>. | + | y is even, <math>y=2y_1</math> for some <math>y_1>0</math>. |
− | <cmath>2x_1^2-2x_1=4y_1^2\Longrightarrow x_1^2-x_1=x_1(x_1-1)= | + | <cmath>2x_1^2-2x_1=4y_1^2\Longrightarrow x_1^2-x_1=x_1(x_1-1)=2y_1^2</cmath> |
We need to find all integers <math>x_1</math> such that <math>x_1(x_1-1)</math> is twice a perfect square. | We need to find all integers <math>x_1</math> such that <math>x_1(x_1-1)</math> is twice a perfect square. | ||
− | Since <math>x_1</math> and <math>x_1-1</math> are relatively prime, | + | Since <math>x_1</math> and <math>x_1-1</math> are relatively prime, one of them is a perfect square and the other is twice a perfect square. Moreover, the perfect square must be odd. |
− | + | We will now find four smallest solutions for <math>x_1</math>. Obviously, these will give the four smallest solutions for <math>x+y</math>. | |
− | <math>x_1 | + | Each time we examine whether the value <math>y_1=\sqrt{\frac{x_1(x_1-1)}2}</math> is a positive integer. |
− | <math>x_1=289</math> | + | * <math>x_1=1</math> gives <math>y_1=0</math> which is not positive. |
+ | * <math>x_1-1=1</math> gives <math>y_1=1</math>, hence <math>(x,y)=(3,2)</math>. | ||
+ | * <math>x_1=9</math> gives <math>y_1=6</math>, hence <math>(x,y)=(17,12)</math>. | ||
+ | * <math>x_1-1=9</math> gives <math>y_1=\sqrt{9\cdot 5}</math>. | ||
+ | * <math>x_1=25</math> gives <math>y_1=\sqrt{25\cdot 12}</math>. | ||
+ | * <math>x_1-1=25</math> gives <math>y_1=\sqrt{25\cdot 13}</math>. | ||
+ | * <math>x_1=49</math> gives <math>y_1=\sqrt{49\cdot 24}</math>. | ||
+ | * <math>x_1-1=49</math> gives <math>y_1=\sqrt{49\cdot 25}=35</math>, hence <math>(x,y)=(99,70)</math>. | ||
+ | * <math>x_1=81</math> gives <math>y_1=\sqrt{81\cdot 40}</math>. | ||
+ | * <math>x_1-1=81</math> gives <math>y_1=\sqrt{81\cdot 41}</math>. | ||
+ | * <math>x_1=121</math> gives <math>y_1=\sqrt{121\cdot 60}</math>. | ||
+ | * <math>x_1-1=121</math> gives <math>y_1=\sqrt{121\cdot 61}</math>. | ||
+ | * <math>x_1=169</math> gives <math>y_1=\sqrt{169\cdot 84}</math>. | ||
+ | * <math>x_1-1=169</math> gives <math>y_1=\sqrt{169\cdot 85}</math>. | ||
+ | * <math>x_1=225</math> gives <math>y_1=\sqrt{225\cdot 112}</math>. | ||
+ | * <math>x_1-1=225</math> gives <math>y_1=\sqrt{225\cdot 113}</math>. | ||
+ | * <math>x_1=289</math> gives <math>y_1=\sqrt{289\cdot 144}=17\cdot 12 = 204</math>, hence <math>(x,y)=(577,408)</math>, and the answer is <math>x+y=\boxed{985}</math>. | ||
− | We | + | ===Solution 2=== |
+ | We quickly find the first solution, <math>(x,y)=(3,2)</math>. Factoring, we get | ||
+ | <cmath>(3-2\sqrt{2})(3+2\sqrt{2})=1</cmath> | ||
+ | We can square both sides to get | ||
+ | <cmath>(3-2\sqrt{2})^2(3+2\sqrt{2})^2=1^2 \Rightarrow (17-12\sqrt{2})(17+12\sqrt{2})=1</cmath> | ||
+ | So <math>(x,y)=(17,12)</math> is another solution. | ||
− | + | This gives us a way to generate whatever solutions we want to the equation. Raising the first equation to the fourth power gives us | |
− | + | <cmath>(577-408\sqrt{2})(577+408\sqrt{2})=1</cmath> | |
− | < | + | The answer is <math>577+408=\boxed{985}</math>. |
− | |||
− | |||
==See also== | ==See also== |
Latest revision as of 22:41, 5 January 2014
Problem
Find the fourth smallest possible value of where x and y are positive integers that satisfy the following equation:
Solution
Solution 1
means that is odd. We can let for some :
y is even, for some .
We need to find all integers such that is twice a perfect square.
Since and are relatively prime, one of them is a perfect square and the other is twice a perfect square. Moreover, the perfect square must be odd.
We will now find four smallest solutions for . Obviously, these will give the four smallest solutions for .
Each time we examine whether the value is a positive integer.
- gives which is not positive.
- gives , hence .
- gives , hence .
- gives .
- gives .
- gives .
- gives .
- gives , hence .
- gives .
- gives .
- gives .
- gives .
- gives .
- gives .
- gives .
- gives .
- gives , hence , and the answer is .
Solution 2
We quickly find the first solution, . Factoring, we get We can square both sides to get So is another solution.
This gives us a way to generate whatever solutions we want to the equation. Raising the first equation to the fourth power gives us The answer is .
See also
2005 Alabama ARML TST (Problems) | ||
Preceded by: Problem 13 |
Followed by: Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |