Difference between revisions of "2024 INMO"
Drago.7437 (talk | contribs) (→Solution) |
Drago.7437 (talk | contribs) (→Solution) |
||
Line 20: | Line 20: | ||
==Solution== | ==Solution== | ||
\(a^{2023} \equiv -b^{2023} \pmod{p}\) | \(a^{2023} \equiv -b^{2023} \pmod{p}\) | ||
+ | |||
\(a^{(2023 \cdot 2024 \cdot 2025)} \equiv b^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | \(a^{(2023 \cdot 2024 \cdot 2025)} \equiv b^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | ||
+ | |||
Similarly, | Similarly, | ||
+ | |||
\(b^{(2023 \cdot 2024 \cdot 2025)} \equiv -c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | \(b^{(2023 \cdot 2024 \cdot 2025)} \equiv -c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | ||
+ | |||
and lastly | and lastly | ||
+ | |||
\(a^{(2023 \cdot 2024 \cdot 2025)} \equiv c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | \(a^{(2023 \cdot 2024 \cdot 2025)} \equiv c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\) | ||
+ | |||
Using some equations, we get | Using some equations, we get | ||
+ | |||
\(2c^{(2023 \cdot 2024 \cdot 2025)} \equiv 0 \pmod{p}\) | \(2c^{(2023 \cdot 2024 \cdot 2025)} \equiv 0 \pmod{p}\) | ||
+ | |||
and by the question, \(p\) is an odd prime, so we are done as \(\gcd(2,p) = 1\) | and by the question, \(p\) is an odd prime, so we are done as \(\gcd(2,p) = 1\) |
Latest revision as of 10:43, 14 December 2024
==Problem 1
\text {In} triangle ABC with , \text{point E lies on the circumcircle of} \text{triangle ABC such that} . \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.}
Solution
https://i.imgur.com/ivcAShL.png To Prove: Points E, F, P, C are concyclic
Observe: Notice that because . Here F is the circumcentre of because lies on the Perpendicular bisector of AG is the midpoint of is the perpendicular bisector of . This gives And because Points E, F, P, C are concyclic. Hence proven that the centre of the circumcircle of lies on the circumcircle of .
∼Lakshya Pamecha
Problem 3
Let p be an odd prime number and be integers so that the integers are all divisible by p. Prove that p divides each of .
Solution
\(a^{2023} \equiv -b^{2023} \pmod{p}\)
\(a^{(2023 \cdot 2024 \cdot 2025)} \equiv b^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\)
Similarly,
\(b^{(2023 \cdot 2024 \cdot 2025)} \equiv -c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\)
and lastly
\(a^{(2023 \cdot 2024 \cdot 2025)} \equiv c^{(2023 \cdot 2024 \cdot 2025)} \pmod{p}\)
Using some equations, we get
\(2c^{(2023 \cdot 2024 \cdot 2025)} \equiv 0 \pmod{p}\)
and by the question, \(p\) is an odd prime, so we are done as \(\gcd(2,p) = 1\)