Difference between revisions of "Euclid's Lemma"

m
m (Proof of Euclid's Lemma)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Euclid's Lemma''' is a result in [[number theory]], that is attributed to [[Euclid]]. It states that:
+
'''Euclid's Lemma''' is a result in [[number theory]] attributed to [[Euclid]]. It states that:
  
A positive integer <math>p</math> is a [[prime number]] if and only if <math>p|ab \Longrightarrow p|a</math> or <math> p|b </math>
+
A positive integer <math>p>1</math> is a [[prime number]] if and only if <math>p \mid ab</math> implies that <math>p \mid a</math> or <math>p\mid b</math>, for all [[integer]]s <math>a</math> and <math>b</math>.
  
  
==Proof of Euclid's Lemma==
+
== Proof of Euclid's Lemma ==
There are two proofs of Euclid's lemma.
 
  
===First Proof===
+
Without loss of generality, suppose <math> \gcd(p,a)=1</math> (otherwise we are done).  By [[Bezout's Lemma]], there exist integers such that <math>x,y</math> such that <math>px+ay=1</math>. Hence <math>b(px+ay)=b</math> and <math>pbx+aby=b</math>. Since <math> p\mid p</math> and <math> p \mid ab </math> (by hypothesis), <math>p \mid pbx + aby =b</math>, as desired.
By assumption <math> \gcd(p,a)=1</math>, thus we can use Bezout's lemma to find integers <math> x,y</math> such that <math> px+ay=1</math>. Hence <math> b\bdot(px+ay)=b</math> and <math> pbx+aby=b</math>. Since <math> p\mid p</math> and <math> p \mid ab </math> (by hypothesis), we conclude that <math> p \mid pbx + aby =b </math> as claimed.
 
  
===Second Proof===
+
On the other hand, if <math>p>1</math> is not prime, then it must be composite, i.e., <math>p=ab</math>, for integers <math>a,b</math> both greater than 1. Then, <math>p\nmid a</math> and <math>p\nmid b</math>.
We have <math> p\vert ab</math>, so <math> ab=np</math>, with <math> n</math> an integer. Dividing both sides by <math> p</math>, we have
+
 
<math>\frac{ab}{p}=n</math>. But <math> \gcd(p,a)=1</math> implies <math> a/p</math> is only an integer if <math> p=1</math>. So
+
This completes the proof.
<math>\frac{ab}{p} = a \frac{b}{p} = n </math>,
 
which means <math> p</math> must divide <math> b</math>.
 
  
 
==See Also==
 
==See Also==
*[[Euclid]]
+
 
*[[Number theory]]
+
* [[Fundamental theorem of arithmetic]]
 +
* [[Euclid]]
 +
* [[Number theory]]
  
 
[[Category:Number theory]]
 
[[Category:Number theory]]

Latest revision as of 03:18, 20 November 2023

Euclid's Lemma is a result in number theory attributed to Euclid. It states that:

A positive integer $p>1$ is a prime number if and only if $p \mid ab$ implies that $p \mid a$ or $p\mid b$, for all integers $a$ and $b$.


Proof of Euclid's Lemma

Without loss of generality, suppose $\gcd(p,a)=1$ (otherwise we are done). By Bezout's Lemma, there exist integers such that $x,y$ such that $px+ay=1$. Hence $b(px+ay)=b$ and $pbx+aby=b$. Since $p\mid p$ and $p \mid ab$ (by hypothesis), $p \mid pbx + aby =b$, as desired.

On the other hand, if $p>1$ is not prime, then it must be composite, i.e., $p=ab$, for integers $a,b$ both greater than 1. Then, $p\nmid a$ and $p\nmid b$.

This completes the proof.

See Also