Difference between revisions of "2007 Alabama ARML TST Problems/Problem 1"

m (Solution)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
<cmath>2000(2000+7)(2000+8)(2000+15)+784=(2000^2+15\cdot 2000+56)(2000^2+15\cdot 2000)+28^2=(2000^2+15\cdot 2000+28)(2000^2+15\cdot 2000+28)-28^2+28^2</cmath>
+
<center><math>\sqrt{2000(2000+7)(2000+8)(2000+15)+784}</math>
  
Thus <math></math>\sqrt{2000\cdot 2007\cdot 2008\cdot 2015+784}=\boxed{4030028}$
+
<math>=\sqrt{(2000^2+15\cdot 2000+56)(2000^2+15\cdot 2000)+28^2}</math>
 +
 
 +
<math>=\sqrt{(2000^2+15\cdot 2000+28)(2000^2+15\cdot 2000+28)-28^2+28^2}</math>
 +
 
 +
<math>=2000^2+15\cdot 2000+28=\boxed{4030028}</math></center>
  
 
==See also==
 
==See also==
 +
{{ARML box|year=2007|state=Alabama|before=First Question|num-a=2}}

Latest revision as of 08:26, 18 June 2008

Problem

Compute: $\sqrt{2000\cdot 2007\cdot 2008\cdot 2015+784}.$

Solution

$\sqrt{2000(2000+7)(2000+8)(2000+15)+784}$

$=\sqrt{(2000^2+15\cdot 2000+56)(2000^2+15\cdot 2000)+28^2}$

$=\sqrt{(2000^2+15\cdot 2000+28)(2000^2+15\cdot 2000+28)-28^2+28^2}$

$=2000^2+15\cdot 2000+28=\boxed{4030028}$

See also

2007 Alabama ARML TST (Problems)
Preceded by:
First Question
Followed by:
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15