Difference between revisions of "2002 AMC 10B Problems/Problem 6"

(New page: == Problem == For how many positive integers <math>n</math> is <math>n^2-3n+2</math> a prime number? <math> \mathrm{(A) \ } \text{none}\qquad \mathrm{(B) \ } \text{one}\qquad \mathrm{(C)...)
 
(Redirected page to 2002 AMC 12B Problems/Problem 3)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT[[2002 AMC 12B Problems/Problem 3]]
 
 
For how many positive integers <math>n</math> is <math>n^2-3n+2</math> a prime number?
 
 
 
<math> \mathrm{(A) \ } \text{none}\qquad \mathrm{(B) \ } \text{one}\qquad \mathrm{(C) \ } \text{two}\qquad \mathrm{(D) \ } \text{more than two, but finitely many}\qquad \mathrm{(E) \ } \text{infinitely many} </math>
 
 
 
== Solution ==
 
 
 
Factoring, <math>n^2-3n+2=(n-1)(n-2)</math>. As primes only have two factors, <math>1</math> and itself, <math>n-2=1</math>, so <math>n=3</math>. Hence, there is only one positive integer <math>n</math>. <math>\mathrm{ (B) \ }</math>
 

Latest revision as of 16:36, 28 July 2011