Difference between revisions of "User:Dojo"

(Trivial Math Proofs)
 
(57 intermediate revisions by 3 users not shown)
Line 1: Line 1:
My name is '''Dojo''' and I currently am 13, and live in Washington.
+
<div id="content" style="width: 600px; margin-left: auto; margin-right: auto; background-color: #cfffbe; border: 5px #6eac68 solid; ">
 
+
<h1 style="font-family: 'ITC Avant Garde Gothic Std','URW Gothic L','Century Gothic','Avant Garde','Trebuchet MS',sans-serif; margin-left: 10px;"> Dojo's Wiki</h1>
My interests are math, technology, solving rubiks cubes, cello, piano, composing, track, cross country and tennis, just to name a few.
+
<div id="inner" style="width: 500px; margin-left: auto; margin-right: auto;">
 
+
Please visit my website: [http://www.dgkim.com dgkim.com]
==The Spinning Sphere==
+
</div>
 
+
</div>
Yes yes,[big voice] I am the creator of the almighty spinning sphere!!! [/end big voice]
 
Yeah well anyway, for anyone interested, I have created a gallery of these spheres:
 
[http://www.artofproblemsolving.com/Forum/album.php?t=234501 My Gallery]
 
(My gallery is now the Animation Studio)
 
 
 
----
 
==Trivial Math Proofs==
 
 
 
Proof that the area of an equilateral triangle with side length <math>s</math> is <math>\dfrac{s^2\sqrt {3}}{4}</math>:
 
 
 
Let's say that there is an equilateral triangle that has a side length of <math>s</math>. We can then draw the following figure:
 
 
 
<center>
 
<asy>
 
draw((0,0)--(1,sqrt(3)),linewidth(1));
 
add(pathticks((0,0)--(1,sqrt(3)),1,green+linewidth(1)));
 
draw((2,0)--(1,sqrt(3)),linewidth(1));
 
add(pathticks((2,0)--(1,sqrt(3)),1,green+linewidth(1)));
 
draw((2,0)--(0,0),linewidth(1));
 
add(pathticks((2,0)--(0,0),1,green+linewidth(1)));
 
label("$s$",(1,0),S);
 
</asy>
 
</center>
 
 
 
Now let's figure out the altitude so we can complete the triangle area forumla of <math>\dfrac{bh}{2}</math>:
 
 
 
<center>
 
<asy>
 
draw((0,0)--(1,sqrt(3)),linewidth(1));
 
add(pathticks((0,0)--(1,sqrt(3)),1,green+linewidth(1)));
 
draw((2,0)--(1,sqrt(3)),linewidth(1));
 
add(pathticks((2,0)--(1,sqrt(3)),1,green+linewidth(1)));
 
draw((2,0)--(0,0),linewidth(1));
 
add(pathticks((2,0)--(0,0),1,green+linewidth(1)));
 
label("$s$",(1,0),S);
 
draw((1,0)--(1,sqrt(3)),dashed+linewidth(1));
 
</asy>
 
</center>
 
 
 
We can now use the pythagorean theorem to find the length of the altitude:
 
 
 
<center>
 
<asy>
 
draw((0,0)--(0,sqrt(3))--(1,0)--cycle,linewidth(1));
 
draw(rightanglemark((0,sqrt(3)),(0,0),(1,0)),red+linewidth(1));
 
</asy>
 
</center>
 
 
 
Since we know that this is a <math>30 - 60 - 90</math> triangle, we can use proportions to find the altitude <math>a</math> in terms of side lenth <math>s</math>:
 
 
 
<math>\begin{align*} \dfrac{2}{\sqrt {3}} & = \dfrac{s}{a} \\
 
\sqrt {3}s & = 2a \\
 
\dfrac{\sqrt {3}}{2}s & = a \end{align*}</math>
 
 
 
Now plugging this altitude into the triangle area forumla gives us:
 
 
 
<math>\dfrac{\frac {\sqrt {3}}{2}s\times s}{2} = \dfrac{\frac {s^2\sqrt {3}}{2}}{2} = \boxed{\dfrac{s^2\sqrt {3}}{4}}</math>
 
 
 
Proof can be found on [http://www.artofproblemsolving.com/Forum/weblog_entry.php?t=273429 this] post of my blog.
 
 
 
----
 
 
 
==Interests==
 
 
 
Here are some of the things I do in my spare time:
 
 
 
===Math===
 
 
 
Classes taken, in order:
 
 
 
1) Introduction to Geometry
 
 
 
2) MATHCOUNTS problem series
 
 
 
3) Intermediate Algebra.
 
 
 
4) AMC 10
 
 
 
Classes to be taken:
 
 
 
1) Introduction to Counting and Probability
 
 
 
2) Introduction to Number Theory
 
 
 
=My current, sad accomplishments:=
 
 
 
Best:
 
 
 
AMC8: 23
 
 
 
AMC10 A: 114.0
 
 
 
AMC10 B: 106.5
 
 
 
AMC12 A: n/a (untaken.)
 
 
 
AMC12 B: n/a (untaken.)
 
 
 
AIME: n/a (untaken.)
 
 
 
USAMO: n/a (untaken.)
 
 
 
IMO: n/a (untaken.)
 
 
 
SAT:
 
 
 
Mathematics - 690
 
 
 
Critical Reading - 550
 
 
 
Writing - 610
 
 
 
Essay - 8
 
 
 
All:
 
 
 
KSEA:
 
 
 
6th grade: 2nd place locally.
 
 
 
7th grade: 2nd place locally.
 
 
 
Local Math is Cool competition:
 
 
 
4th grade-
 
 
 
4th grade competition – 2nd place
 
 
 
5th grade-
 
 
 
5th grade competition – 2nd place
 
 
 
7th grade competition – 5th place
 
 
 
6th grade –
 
 
 
6th grade competition – 9th place
 
 
 
7th grade competition – 5th place
 
 
 
7th grade –
 
 
 
7th grade competition – 1st place
 
 
 
9th grade competition – 7th place
 
 
 
 
 
===Music===
 
 
 
My musical side?
 
 
 
At a young age, I was not the most talented musician. I couldn't sing, I couldn't move my fingers seperately but here I am now. Playing the cello and piano with (in my opinion) very fluid actions. I have perfect pitch and when I sing, I sing in tune. Its just the quality that is... less than perfect. (Sounds like a duck that swallowed a harmonica.)
 
 
 
For all you less musically knowing, a cello is well described [http://en.wikipedia.org/wiki/Cello here].
 
 
 
Lets hope you know what a piano is. :)
 
 
 
Masterclasses taken with:
 
 
 
Amy Sue Barston
 
 
 
Alisha Weiserstien
 
 
 
Compositions/Arrangements:
 
 
 
[http://www.youtube.com/watch?v=F5M_TpzTppQ&feature=channel_page Invention 13]
 
 
 
[http://www.youtube.com/watch?v=wEEkxsP1CpU&feature=channel_page The Journey]
 
 
 
===Athletics===
 
 
 
It is generally assumed that atheletics is not a great part of an AoPSer's life. I mean what kind of athelete would be sitting here writing this wiki page? Well I follow with that, in moderation.
 
 
 
I love to run. It is something that I discovered this year. Cross country, track. Recently the season has ended and I find myself itching to run.
 
 
 
Tennis. Well I didn't have the best hand-eye around, but I manage to play tennis, relatively well and have lessons every sunday...
 
 
 
==Contact==
 
 
 
Some ways you can reach me:
 
 
 
*Email. dojothegreat@gmail.com
 
*PM [http://www.artofproblemsolving.com/Forum/profile.php?mode=viewprofile&u=37836 Profile]
 
*My [http://www.artofproblemsolving.com/Forum/weblog.php?w=1355 Blog]
 
* [http://www.cyneer.com/phpBB3/index.php Forum]
 

Latest revision as of 02:08, 20 July 2012

Dojo's Wiki

Please visit my website: dgkim.com