Difference between revisions of "1964 IMO Problems/Problem 2"
(Created page with '== Problem == Suppose <math>a, b, c</math> are the sides of a triangle. Prove that <cmath>a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)\le{3abc}.</cmath> == Solution ==') |
m |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 4: | Line 4: | ||
<cmath>a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)\le{3abc}.</cmath> | <cmath>a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)\le{3abc}.</cmath> | ||
− | == Solution == | + | ==Solution== |
+ | Let <math>b+c-a = x</math>, <math>c+a-b = y</math>, and <math>a+b-c = z</math>. Then, <math>a = \frac{y+z}{2}</math>, <math>b = \frac{x+z}{2}</math>, and <math>c = \frac{x+y}{2}</math>. By AM-GM, | ||
+ | <cmath>\frac{x+y}{2} \geq \sqrt{xy}, </cmath> | ||
+ | <cmath>\frac{y+z}{2} \geq \sqrt{yz}, </cmath> | ||
+ | <cmath>\textrm{and }\frac{x+z}{2} \geq \sqrt{xz}.</cmath> | ||
+ | |||
+ | Multiplying these equations, we have | ||
+ | <cmath>\frac{x+y}{2} \cdot \frac{y+z}{2} \cdot \frac{x+z}{2} \geq xyz</cmath> | ||
+ | <cmath>\therefore abc \geq (a+b-c)(b+c-a)(c+a-b).</cmath> | ||
+ | We can now simplify: | ||
+ | <cmath>(a+b-c)(b+c-a)(c+a-b) \leq abc</cmath> | ||
+ | <cmath>(-a^2 + b^2 - c^2 + 2ac)(c+a-b) \leq abc</cmath> | ||
+ | <cmath>a(-a^2 + b^2 - c^2 + 2ac) + c(-a^2 + b^2 - c^2 + 2ac) - b(-a^2 + b^2 - c^2 + 2ac) \leq abc</cmath> | ||
+ | <cmath>-a^3 + ab^2 - ac^2 + 2a^2c - a^2c + b^2c - c^3 + 2ac^2 + a^2b - b^3 + bc^2 - 2abc \leq abc</cmath> | ||
+ | <cmath>a^2b + a^2c - a^3 + b^2c + ab^2 - b^3 + ac^2 + bc^2 - c^3 - 2abc \leq abc</cmath> | ||
+ | <cmath>a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)\le{3abc}\textrm{. }\square</cmath> | ||
+ | ~mathboy100 | ||
+ | |||
+ | == Solution 2 == | ||
+ | We can use the substitution <math>a=x+y</math>, <math>b=x+z</math>, and <math>c=y+z</math> to get | ||
+ | |||
+ | <cmath>2z(x+y)^2+2y(x+z)^2+2x(y+z)^2\leq 3(x+y)(x+z)(y+z)</cmath> | ||
+ | |||
+ | <math>2zx^2+2zy^2+2yx^2+2yz^2+2xy^2+2xz^2+12xyz\leq 3x^2y+3x^2z+3y^2x+3y^2z+3z^2x+3z^2y+6xyz</math> | ||
+ | |||
+ | <cmath>x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\geq 6xyz</cmath> | ||
+ | |||
+ | <cmath>\frac{x^2y+x^2z+y^2x+y^2z+z^2x+z^2y}{6}\geq xyz=\sqrt[6]{x^2yx^2zy^2xy^2zz^2xz^2y}</cmath> | ||
+ | |||
+ | This is true by AM-GM. We can work backwards to get that the original inequality is true. | ||
+ | |||
+ | eevee9406: This solution uses incorrect reasoning regarding the inequalities. | ||
+ | |||
+ | ==Solution 3== | ||
+ | Rearrange to get | ||
+ | <cmath>a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) \ge 0,</cmath> | ||
+ | which is true by Schur's inequality. | ||
+ | |||
+ | == See Also == {{IMO box|year=1964|num-b=1|num-a=3}} |
Latest revision as of 16:32, 4 July 2024
Problem
Suppose are the sides of a triangle. Prove that
Solution
Let , , and . Then, , , and . By AM-GM,
Multiplying these equations, we have We can now simplify: ~mathboy100
Solution 2
We can use the substitution , , and to get
This is true by AM-GM. We can work backwards to get that the original inequality is true.
eevee9406: This solution uses incorrect reasoning regarding the inequalities.
Solution 3
Rearrange to get which is true by Schur's inequality.
See Also
1964 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |