Difference between revisions of "2006 AMC 8 Problems/Problem 12"

(Created page with "== Problem == Antonette gets <math> 70 \% </math> on a 10-problem test, <math> 80 \% </math> on a 20-problem test and <math> 90 \% </math> on a 30-problem test. If the three tes...")
 
 
(3 intermediate revisions by 3 users not shown)
Line 14: Line 14:
  
 
Adding them up gets <math> 7+16+27=50 </math>. The overall percentage correct would be <math> \frac{50}{60}=\frac{5}{6}=5 \cdot 16.\overline{6}=83.\overline{3} \approx \boxed{\textbf{(D)}\ 83} </math>.
 
Adding them up gets <math> 7+16+27=50 </math>. The overall percentage correct would be <math> \frac{50}{60}=\frac{5}{6}=5 \cdot 16.\overline{6}=83.\overline{3} \approx \boxed{\textbf{(D)}\ 83} </math>.
 +
 +
==Video Solution by WhyMath==
 +
https://youtu.be/6GetTV9Mnmo
 +
 +
==See Also==
 +
{{AMC8 box|year=2006|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Latest revision as of 15:12, 30 October 2024

Problem

Antonette gets $70 \%$ on a 10-problem test, $80 \%$ on a 20-problem test and $90 \%$ on a 30-problem test. If the three tests are combined into one 60-problem test, which percent is closest to her overall score?

$\textbf{(A)}\ 40\qquad\textbf{(B)}\ 77\qquad\textbf{(C)}\ 80\qquad\textbf{(D)}\ 83\qquad\textbf{(E)}\ 87$

Solution

$70 \% \cdot 10=7$

$80 \% \cdot 20=16$

$90 \% \cdot 30=27$

Adding them up gets $7+16+27=50$. The overall percentage correct would be $\frac{50}{60}=\frac{5}{6}=5 \cdot 16.\overline{6}=83.\overline{3} \approx \boxed{\textbf{(D)}\ 83}$.

Video Solution by WhyMath

https://youtu.be/6GetTV9Mnmo

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png