Difference between revisions of "2006 AMC 8 Problems/Problem 19"

(Created page with "== Problem == Triangle <math> ABC </math> is an isosceles triangle with <math> \overline{AB}=\overline{BC}</math>. Point <math> D </math> is the midpoint of both <math> \overlin...")
 
m (Video Solution)
 
(4 intermediate revisions by 4 users not shown)
Line 16: Line 16:
 
== Solution ==
 
== Solution ==
 
Since triangle <math> ABD </math> is congruent to triangle <math> ECD </math> and <math> \overline{CE} =11 </math>, <math> \overline{AB}=11 </math>. Since <math> \overline{AB}=\overline{BC}</math>,  <math> \overline{BC}=11 </math>. Because point <math> D </math> is the midpoint of <math> \overline{BC} </math>, <math> \overline{BD}=\frac{\overline{BC}}{2}=\frac{11}{2}=\boxed{\textbf{(D)}\ 5.5} </math>.
 
Since triangle <math> ABD </math> is congruent to triangle <math> ECD </math> and <math> \overline{CE} =11 </math>, <math> \overline{AB}=11 </math>. Since <math> \overline{AB}=\overline{BC}</math>,  <math> \overline{BC}=11 </math>. Because point <math> D </math> is the midpoint of <math> \overline{BC} </math>, <math> \overline{BD}=\frac{\overline{BC}}{2}=\frac{11}{2}=\boxed{\textbf{(D)}\ 5.5} </math>.
 +
 +
 +
== Video Solution ==
 +
https://youtu.be/HzzzRJEppRA Soo, DRMS, NM
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/abSgjn4Qs34?t=2124
 +
 +
~ pi_is_3.14
 +
 +
==See Also==
 +
{{AMC8 box|year=2006|n=II|num-b=18|num-a=20}}
 +
{{MAA Notice}}

Latest revision as of 20:47, 2 January 2023

Problem

Triangle $ABC$ is an isosceles triangle with $\overline{AB}=\overline{BC}$. Point $D$ is the midpoint of both $\overline{BC}$ and $\overline{AE}$, and $\overline{CE}$ is 11 units long. Triangle $ABD$ is congruent to triangle $ECD$. What is the length of $\overline{BD}$?

[asy] size(100); draw((0,0)--(2,4)--(4,0)--(6,4)--cycle--(4,0),linewidth(1)); label("$A$", (0,0), SW); label("$B$", (2,4), N); label("$C$", (4,0), SE); label("$D$", shift(0.2,0.1)*intersectionpoint((0,0)--(6,4),(2,4)--(4,0)), N); label("$E$", (6,4), NE);[/asy]

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6$

Solution

Since triangle $ABD$ is congruent to triangle $ECD$ and $\overline{CE} =11$, $\overline{AB}=11$. Since $\overline{AB}=\overline{BC}$, $\overline{BC}=11$. Because point $D$ is the midpoint of $\overline{BC}$, $\overline{BD}=\frac{\overline{BC}}{2}=\frac{11}{2}=\boxed{\textbf{(D)}\ 5.5}$.


Video Solution

https://youtu.be/HzzzRJEppRA Soo, DRMS, NM

Video Solution by OmegaLearn

https://youtu.be/abSgjn4Qs34?t=2124

~ pi_is_3.14

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png